Metamath Proof Explorer


Theorem subeq0ad

Description: The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 . Generalization of subeq0d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
Assertion subeq0ad φ A B = 0 A = B

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 subeq0 A B A B = 0 A = B
4 1 2 3 syl2anc φ A B = 0 A = B