Metamath Proof Explorer


Theorem subeq0bd

Description: If two complex numbers are equal, their difference is zero. Consequence of subeq0ad . Converse of subeq0d . Contrapositive of subne0ad . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses subeq0bd.1 φ A
subeq0bd.2 φ A = B
Assertion subeq0bd φ A B = 0

Proof

Step Hyp Ref Expression
1 subeq0bd.1 φ A
2 subeq0bd.2 φ A = B
3 2 1 eqeltrrd φ B
4 1 3 subeq0ad φ A B = 0 A = B
5 2 4 mpbird φ A B = 0