Metamath Proof Explorer


Theorem subeq0d

Description: If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
subeq0d.3 φ A B = 0
Assertion subeq0d φ A = B

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 subeq0d.3 φ A B = 0
4 subeq0 A B A B = 0 A = B
5 1 2 4 syl2anc φ A B = 0 A = B
6 3 5 mpbid φ A = B