Metamath Proof Explorer


Theorem subeqxfrd

Description: Transfer two terms of a subtraction in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020)

Ref Expression
Hypotheses subeqxfrd.a φ A
subeqxfrd.b φ B
subeqxfrd.c φ C
subeqxfrd.d φ D
subeqxfrd.1 φ A B = C D
Assertion subeqxfrd φ A C = B D

Proof

Step Hyp Ref Expression
1 subeqxfrd.a φ A
2 subeqxfrd.b φ B
3 subeqxfrd.c φ C
4 subeqxfrd.d φ D
5 subeqxfrd.1 φ A B = C D
6 5 oveq1d φ A B + B - C = C D + B - C
7 1 2 3 npncand φ A B + B - C = A C
8 3 4 2 npncan3d φ C D + B - C = B D
9 6 7 8 3eqtr3d φ A C = B D