Metamath Proof Explorer


Theorem subf

Description: Subtraction is an operation on the complex numbers. (Contributed by NM, 4-Aug-2007) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Assertion subf : ×

Proof

Step Hyp Ref Expression
1 subval x y x y = ι z | y + z = x
2 subcl x y x y
3 1 2 eqeltrrd x y ι z | y + z = x
4 3 rgen2 x y ι z | y + z = x
5 df-sub = x , y ι z | y + z = x
6 5 fmpo x y ι z | y + z = x : ×
7 4 6 mpbi : ×