| Step |
Hyp |
Ref |
Expression |
| 1 |
|
derang.d |
|
| 2 |
|
subfac.n |
|
| 3 |
|
nnnn0 |
|
| 4 |
|
faccl |
|
| 5 |
3 4
|
syl |
|
| 6 |
5
|
nncnd |
|
| 7 |
|
ere |
|
| 8 |
7
|
recni |
|
| 9 |
|
epos |
|
| 10 |
7 9
|
gt0ne0ii |
|
| 11 |
|
divcl |
|
| 12 |
8 10 11
|
mp3an23 |
|
| 13 |
6 12
|
syl |
|
| 14 |
1 2
|
subfacf |
|
| 15 |
14
|
ffvelcdmi |
|
| 16 |
3 15
|
syl |
|
| 17 |
16
|
nn0cnd |
|
| 18 |
13 17
|
subcld |
|
| 19 |
18
|
abscld |
|
| 20 |
|
peano2nn |
|
| 21 |
20
|
peano2nnd |
|
| 22 |
21
|
nnred |
|
| 23 |
20 20
|
nnmulcld |
|
| 24 |
22 23
|
nndivred |
|
| 25 |
|
nnrecre |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
|
neg1cn |
|
| 30 |
29
|
a1i |
|
| 31 |
|
ax-1cn |
|
| 32 |
31
|
absnegi |
|
| 33 |
|
abs1 |
|
| 34 |
32 33
|
eqtri |
|
| 35 |
|
1le1 |
|
| 36 |
34 35
|
eqbrtri |
|
| 37 |
36
|
a1i |
|
| 38 |
26 27 28 20 30 37
|
eftlub |
|
| 39 |
20
|
nnnn0d |
|
| 40 |
|
eluznn0 |
|
| 41 |
39 40
|
sylan |
|
| 42 |
26
|
eftval |
|
| 43 |
41 42
|
syl |
|
| 44 |
43
|
sumeq2dv |
|
| 45 |
44
|
fveq2d |
|
| 46 |
34
|
oveq1i |
|
| 47 |
20
|
nnzd |
|
| 48 |
|
1exp |
|
| 49 |
47 48
|
syl |
|
| 50 |
46 49
|
eqtrid |
|
| 51 |
50
|
oveq1d |
|
| 52 |
|
faccl |
|
| 53 |
39 52
|
syl |
|
| 54 |
53 20
|
nnmulcld |
|
| 55 |
22 54
|
nndivred |
|
| 56 |
55
|
recnd |
|
| 57 |
56
|
mullidd |
|
| 58 |
51 57
|
eqtrd |
|
| 59 |
38 45 58
|
3brtr3d |
|
| 60 |
|
eqid |
|
| 61 |
|
eftcl |
|
| 62 |
29 61
|
mpan |
|
| 63 |
41 62
|
syl |
|
| 64 |
26
|
eftlcvg |
|
| 65 |
29 39 64
|
sylancr |
|
| 66 |
60 47 43 63 65
|
isumcl |
|
| 67 |
66
|
abscld |
|
| 68 |
5
|
nnred |
|
| 69 |
5
|
nngt0d |
|
| 70 |
|
lemul2 |
|
| 71 |
67 55 68 69 70
|
syl112anc |
|
| 72 |
59 71
|
mpbid |
|
| 73 |
1 2
|
subfacval2 |
|
| 74 |
3 73
|
syl |
|
| 75 |
|
nncn |
|
| 76 |
|
pncan |
|
| 77 |
75 31 76
|
sylancl |
|
| 78 |
77
|
oveq2d |
|
| 79 |
78
|
sumeq1d |
|
| 80 |
79
|
oveq2d |
|
| 81 |
74 80
|
eqtr4d |
|
| 82 |
81
|
oveq1d |
|
| 83 |
|
divrec |
|
| 84 |
8 10 83
|
mp3an23 |
|
| 85 |
6 84
|
syl |
|
| 86 |
|
df-e |
|
| 87 |
86
|
oveq2i |
|
| 88 |
|
efneg |
|
| 89 |
31 88
|
ax-mp |
|
| 90 |
|
efval |
|
| 91 |
29 90
|
ax-mp |
|
| 92 |
87 89 91
|
3eqtr2i |
|
| 93 |
|
nn0uz |
|
| 94 |
42
|
adantl |
|
| 95 |
62
|
adantl |
|
| 96 |
|
0nn0 |
|
| 97 |
26
|
eftlcvg |
|
| 98 |
29 96 97
|
mp2an |
|
| 99 |
98
|
a1i |
|
| 100 |
93 60 39 94 95 99
|
isumsplit |
|
| 101 |
92 100
|
eqtrid |
|
| 102 |
101
|
oveq2d |
|
| 103 |
|
fzfid |
|
| 104 |
|
elfznn0 |
|
| 105 |
104
|
adantl |
|
| 106 |
29 105 61
|
sylancr |
|
| 107 |
103 106
|
fsumcl |
|
| 108 |
6 107 66
|
adddid |
|
| 109 |
85 102 108
|
3eqtrd |
|
| 110 |
82 109
|
eqtr4d |
|
| 111 |
6 66
|
mulcld |
|
| 112 |
13 17 111
|
subaddd |
|
| 113 |
110 112
|
mpbird |
|
| 114 |
113
|
fveq2d |
|
| 115 |
6 66
|
absmuld |
|
| 116 |
5
|
nnnn0d |
|
| 117 |
116
|
nn0ge0d |
|
| 118 |
68 117
|
absidd |
|
| 119 |
118
|
oveq1d |
|
| 120 |
114 115 119
|
3eqtrd |
|
| 121 |
|
facp1 |
|
| 122 |
3 121
|
syl |
|
| 123 |
122
|
oveq1d |
|
| 124 |
20
|
nncnd |
|
| 125 |
6 124 124
|
mulassd |
|
| 126 |
123 125
|
eqtr2d |
|
| 127 |
126
|
oveq2d |
|
| 128 |
21
|
nncnd |
|
| 129 |
23
|
nncnd |
|
| 130 |
23
|
nnne0d |
|
| 131 |
5
|
nnne0d |
|
| 132 |
128 129 6 130 131
|
divcan5d |
|
| 133 |
54
|
nncnd |
|
| 134 |
54
|
nnne0d |
|
| 135 |
6 128 133 134
|
divassd |
|
| 136 |
127 132 135
|
3eqtr3d |
|
| 137 |
72 120 136
|
3brtr4d |
|
| 138 |
|
nnmulcl |
|
| 139 |
21 138
|
mpancom |
|
| 140 |
139
|
nnred |
|
| 141 |
140
|
ltp1d |
|
| 142 |
129
|
mullidd |
|
| 143 |
31
|
a1i |
|
| 144 |
75 143 124
|
adddird |
|
| 145 |
75 124
|
mulcomd |
|
| 146 |
124
|
mullidd |
|
| 147 |
145 146
|
oveq12d |
|
| 148 |
124 143 75
|
adddird |
|
| 149 |
148
|
oveq1d |
|
| 150 |
75
|
mullidd |
|
| 151 |
150
|
oveq2d |
|
| 152 |
151
|
oveq1d |
|
| 153 |
124 75
|
mulcld |
|
| 154 |
153 75 143
|
addassd |
|
| 155 |
149 152 154
|
3eqtrd |
|
| 156 |
147 155
|
eqtr4d |
|
| 157 |
142 144 156
|
3eqtrd |
|
| 158 |
141 157
|
breqtrrd |
|
| 159 |
|
nnre |
|
| 160 |
|
nngt0 |
|
| 161 |
159 160
|
jca |
|
| 162 |
|
1red |
|
| 163 |
|
nnre |
|
| 164 |
|
nngt0 |
|
| 165 |
163 164
|
jca |
|
| 166 |
23 165
|
syl |
|
| 167 |
|
lt2mul2div |
|
| 168 |
22 161 162 166 167
|
syl22anc |
|
| 169 |
158 168
|
mpbid |
|
| 170 |
19 24 25 137 169
|
lelttrd |
|