Metamath Proof Explorer


Theorem subfacp1lem2a

Description: Lemma for subfacp1 . Properties of a bijection on K augmented with the two-element flip to get a bijection on K u. { 1 , M } . (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Hypotheses derang.d D = x Fin f | f : x 1-1 onto x y x f y y
subfac.n S = n 0 D 1 n
subfacp1lem.a A = f | f : 1 N + 1 1-1 onto 1 N + 1 y 1 N + 1 f y y
subfacp1lem1.n φ N
subfacp1lem1.m φ M 2 N + 1
subfacp1lem1.x M V
subfacp1lem1.k K = 2 N + 1 M
subfacp1lem2.5 F = G 1 M M 1
subfacp1lem2.6 φ G : K 1-1 onto K
Assertion subfacp1lem2a φ F : 1 N + 1 1-1 onto 1 N + 1 F 1 = M F M = 1

Proof

Step Hyp Ref Expression
1 derang.d D = x Fin f | f : x 1-1 onto x y x f y y
2 subfac.n S = n 0 D 1 n
3 subfacp1lem.a A = f | f : 1 N + 1 1-1 onto 1 N + 1 y 1 N + 1 f y y
4 subfacp1lem1.n φ N
5 subfacp1lem1.m φ M 2 N + 1
6 subfacp1lem1.x M V
7 subfacp1lem1.k K = 2 N + 1 M
8 subfacp1lem2.5 F = G 1 M M 1
9 subfacp1lem2.6 φ G : K 1-1 onto K
10 1z 1
11 f1oprswap 1 M V 1 M M 1 : 1 M 1-1 onto 1 M
12 10 6 11 mp2an 1 M M 1 : 1 M 1-1 onto 1 M
13 12 a1i φ 1 M M 1 : 1 M 1-1 onto 1 M
14 1 2 3 4 5 6 7 subfacp1lem1 φ K 1 M = K 1 M = 1 N + 1 K = N 1
15 14 simp1d φ K 1 M =
16 f1oun G : K 1-1 onto K 1 M M 1 : 1 M 1-1 onto 1 M K 1 M = K 1 M = G 1 M M 1 : K 1 M 1-1 onto K 1 M
17 9 13 15 15 16 syl22anc φ G 1 M M 1 : K 1 M 1-1 onto K 1 M
18 14 simp2d φ K 1 M = 1 N + 1
19 f1oeq1 F = G 1 M M 1 F : K 1 M 1-1 onto K 1 M G 1 M M 1 : K 1 M 1-1 onto K 1 M
20 8 19 ax-mp F : K 1 M 1-1 onto K 1 M G 1 M M 1 : K 1 M 1-1 onto K 1 M
21 f1oeq2 K 1 M = 1 N + 1 F : K 1 M 1-1 onto K 1 M F : 1 N + 1 1-1 onto K 1 M
22 20 21 bitr3id K 1 M = 1 N + 1 G 1 M M 1 : K 1 M 1-1 onto K 1 M F : 1 N + 1 1-1 onto K 1 M
23 f1oeq3 K 1 M = 1 N + 1 F : 1 N + 1 1-1 onto K 1 M F : 1 N + 1 1-1 onto 1 N + 1
24 22 23 bitrd K 1 M = 1 N + 1 G 1 M M 1 : K 1 M 1-1 onto K 1 M F : 1 N + 1 1-1 onto 1 N + 1
25 18 24 syl φ G 1 M M 1 : K 1 M 1-1 onto K 1 M F : 1 N + 1 1-1 onto 1 N + 1
26 17 25 mpbid φ F : 1 N + 1 1-1 onto 1 N + 1
27 f1ofun F : 1 N + 1 1-1 onto 1 N + 1 Fun F
28 26 27 syl φ Fun F
29 snsspr1 1 M 1 M M 1
30 ssun2 1 M M 1 G 1 M M 1
31 30 8 sseqtrri 1 M M 1 F
32 29 31 sstri 1 M F
33 1ex 1 V
34 33 snid 1 1
35 6 dmsnop dom 1 M = 1
36 34 35 eleqtrri 1 dom 1 M
37 funssfv Fun F 1 M F 1 dom 1 M F 1 = 1 M 1
38 32 36 37 mp3an23 Fun F F 1 = 1 M 1
39 28 38 syl φ F 1 = 1 M 1
40 33 6 fvsn 1 M 1 = M
41 39 40 eqtrdi φ F 1 = M
42 snsspr2 M 1 1 M M 1
43 42 31 sstri M 1 F
44 6 snid M M
45 33 dmsnop dom M 1 = M
46 44 45 eleqtrri M dom M 1
47 funssfv Fun F M 1 F M dom M 1 F M = M 1 M
48 43 46 47 mp3an23 Fun F F M = M 1 M
49 28 48 syl φ F M = M 1 M
50 6 33 fvsn M 1 M = 1
51 49 50 eqtrdi φ F M = 1
52 26 41 51 3jca φ F : 1 N + 1 1-1 onto 1 N + 1 F 1 = M F M = 1