| Step |
Hyp |
Ref |
Expression |
| 1 |
|
derang.d |
|
| 2 |
|
subfac.n |
|
| 3 |
|
subfacp1lem.a |
|
| 4 |
|
subfacp1lem1.n |
|
| 5 |
|
subfacp1lem1.m |
|
| 6 |
|
subfacp1lem1.x |
|
| 7 |
|
subfacp1lem1.k |
|
| 8 |
|
subfacp1lem5.b |
|
| 9 |
|
subfacp1lem5.f |
|
| 10 |
|
f1oi |
|
| 11 |
10
|
a1i |
|
| 12 |
1 2 3 4 5 6 7 9 11
|
subfacp1lem2a |
|
| 13 |
12
|
simp1d |
|
| 14 |
|
f1ocnv |
|
| 15 |
|
f1ofn |
|
| 16 |
13 14 15
|
3syl |
|
| 17 |
|
f1ofn |
|
| 18 |
13 17
|
syl |
|
| 19 |
1 2 3 4 5 6 7
|
subfacp1lem1 |
|
| 20 |
19
|
simp2d |
|
| 21 |
20
|
eleq2d |
|
| 22 |
21
|
biimpar |
|
| 23 |
|
elun |
|
| 24 |
22 23
|
sylib |
|
| 25 |
1 2 3 4 5 6 7 9 11
|
subfacp1lem2b |
|
| 26 |
|
fvresi |
|
| 27 |
26
|
adantl |
|
| 28 |
25 27
|
eqtrd |
|
| 29 |
28
|
fveq2d |
|
| 30 |
29 28
|
eqtrd |
|
| 31 |
|
vex |
|
| 32 |
31
|
elpr |
|
| 33 |
12
|
simp2d |
|
| 34 |
33
|
fveq2d |
|
| 35 |
12
|
simp3d |
|
| 36 |
34 35
|
eqtrd |
|
| 37 |
|
2fveq3 |
|
| 38 |
|
id |
|
| 39 |
37 38
|
eqeq12d |
|
| 40 |
36 39
|
syl5ibrcom |
|
| 41 |
35
|
fveq2d |
|
| 42 |
41 33
|
eqtrd |
|
| 43 |
|
2fveq3 |
|
| 44 |
|
id |
|
| 45 |
43 44
|
eqeq12d |
|
| 46 |
42 45
|
syl5ibrcom |
|
| 47 |
40 46
|
jaod |
|
| 48 |
47
|
imp |
|
| 49 |
32 48
|
sylan2b |
|
| 50 |
30 49
|
jaodan |
|
| 51 |
24 50
|
syldan |
|
| 52 |
13
|
adantr |
|
| 53 |
|
f1of |
|
| 54 |
13 53
|
syl |
|
| 55 |
54
|
ffvelcdmda |
|
| 56 |
|
f1ocnvfv |
|
| 57 |
52 55 56
|
syl2anc |
|
| 58 |
51 57
|
mpd |
|
| 59 |
16 18 58
|
eqfnfvd |
|