Step |
Hyp |
Ref |
Expression |
1 |
|
derang.d |
|
2 |
|
subfac.n |
|
3 |
|
subfacp1lem.a |
|
4 |
|
subfacp1lem1.n |
|
5 |
|
subfacp1lem1.m |
|
6 |
|
subfacp1lem1.x |
|
7 |
|
subfacp1lem1.k |
|
8 |
|
subfacp1lem5.b |
|
9 |
|
subfacp1lem5.f |
|
10 |
|
f1oi |
|
11 |
10
|
a1i |
|
12 |
1 2 3 4 5 6 7 9 11
|
subfacp1lem2a |
|
13 |
12
|
simp1d |
|
14 |
|
f1ocnv |
|
15 |
|
f1ofn |
|
16 |
13 14 15
|
3syl |
|
17 |
|
f1ofn |
|
18 |
13 17
|
syl |
|
19 |
1 2 3 4 5 6 7
|
subfacp1lem1 |
|
20 |
19
|
simp2d |
|
21 |
20
|
eleq2d |
|
22 |
21
|
biimpar |
|
23 |
|
elun |
|
24 |
22 23
|
sylib |
|
25 |
1 2 3 4 5 6 7 9 11
|
subfacp1lem2b |
|
26 |
|
fvresi |
|
27 |
26
|
adantl |
|
28 |
25 27
|
eqtrd |
|
29 |
28
|
fveq2d |
|
30 |
29 28
|
eqtrd |
|
31 |
|
vex |
|
32 |
31
|
elpr |
|
33 |
12
|
simp2d |
|
34 |
33
|
fveq2d |
|
35 |
12
|
simp3d |
|
36 |
34 35
|
eqtrd |
|
37 |
|
2fveq3 |
|
38 |
|
id |
|
39 |
37 38
|
eqeq12d |
|
40 |
36 39
|
syl5ibrcom |
|
41 |
35
|
fveq2d |
|
42 |
41 33
|
eqtrd |
|
43 |
|
2fveq3 |
|
44 |
|
id |
|
45 |
43 44
|
eqeq12d |
|
46 |
42 45
|
syl5ibrcom |
|
47 |
40 46
|
jaod |
|
48 |
47
|
imp |
|
49 |
32 48
|
sylan2b |
|
50 |
30 49
|
jaodan |
|
51 |
24 50
|
syldan |
|
52 |
13
|
adantr |
|
53 |
|
f1of |
|
54 |
13 53
|
syl |
|
55 |
54
|
ffvelrnda |
|
56 |
|
f1ocnvfv |
|
57 |
52 55 56
|
syl2anc |
|
58 |
51 57
|
mpd |
|
59 |
16 18 58
|
eqfnfvd |
|