Metamath Proof Explorer


Theorem subfacp1lem4

Description: Lemma for subfacp1 . The function F , which swaps 1 with M and leaves all other elements alone, is a bijection of order 2 , i.e. it is its own inverse. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses derang.d D = x Fin f | f : x 1-1 onto x y x f y y
subfac.n S = n 0 D 1 n
subfacp1lem.a A = f | f : 1 N + 1 1-1 onto 1 N + 1 y 1 N + 1 f y y
subfacp1lem1.n φ N
subfacp1lem1.m φ M 2 N + 1
subfacp1lem1.x M V
subfacp1lem1.k K = 2 N + 1 M
subfacp1lem5.b B = g A | g 1 = M g M 1
subfacp1lem5.f F = I K 1 M M 1
Assertion subfacp1lem4 φ F -1 = F

Proof

Step Hyp Ref Expression
1 derang.d D = x Fin f | f : x 1-1 onto x y x f y y
2 subfac.n S = n 0 D 1 n
3 subfacp1lem.a A = f | f : 1 N + 1 1-1 onto 1 N + 1 y 1 N + 1 f y y
4 subfacp1lem1.n φ N
5 subfacp1lem1.m φ M 2 N + 1
6 subfacp1lem1.x M V
7 subfacp1lem1.k K = 2 N + 1 M
8 subfacp1lem5.b B = g A | g 1 = M g M 1
9 subfacp1lem5.f F = I K 1 M M 1
10 f1oi I K : K 1-1 onto K
11 10 a1i φ I K : K 1-1 onto K
12 1 2 3 4 5 6 7 9 11 subfacp1lem2a φ F : 1 N + 1 1-1 onto 1 N + 1 F 1 = M F M = 1
13 12 simp1d φ F : 1 N + 1 1-1 onto 1 N + 1
14 f1ocnv F : 1 N + 1 1-1 onto 1 N + 1 F -1 : 1 N + 1 1-1 onto 1 N + 1
15 f1ofn F -1 : 1 N + 1 1-1 onto 1 N + 1 F -1 Fn 1 N + 1
16 13 14 15 3syl φ F -1 Fn 1 N + 1
17 f1ofn F : 1 N + 1 1-1 onto 1 N + 1 F Fn 1 N + 1
18 13 17 syl φ F Fn 1 N + 1
19 1 2 3 4 5 6 7 subfacp1lem1 φ K 1 M = K 1 M = 1 N + 1 K = N 1
20 19 simp2d φ K 1 M = 1 N + 1
21 20 eleq2d φ x K 1 M x 1 N + 1
22 21 biimpar φ x 1 N + 1 x K 1 M
23 elun x K 1 M x K x 1 M
24 22 23 sylib φ x 1 N + 1 x K x 1 M
25 1 2 3 4 5 6 7 9 11 subfacp1lem2b φ x K F x = I K x
26 fvresi x K I K x = x
27 26 adantl φ x K I K x = x
28 25 27 eqtrd φ x K F x = x
29 28 fveq2d φ x K F F x = F x
30 29 28 eqtrd φ x K F F x = x
31 vex x V
32 31 elpr x 1 M x = 1 x = M
33 12 simp2d φ F 1 = M
34 33 fveq2d φ F F 1 = F M
35 12 simp3d φ F M = 1
36 34 35 eqtrd φ F F 1 = 1
37 2fveq3 x = 1 F F x = F F 1
38 id x = 1 x = 1
39 37 38 eqeq12d x = 1 F F x = x F F 1 = 1
40 36 39 syl5ibrcom φ x = 1 F F x = x
41 35 fveq2d φ F F M = F 1
42 41 33 eqtrd φ F F M = M
43 2fveq3 x = M F F x = F F M
44 id x = M x = M
45 43 44 eqeq12d x = M F F x = x F F M = M
46 42 45 syl5ibrcom φ x = M F F x = x
47 40 46 jaod φ x = 1 x = M F F x = x
48 47 imp φ x = 1 x = M F F x = x
49 32 48 sylan2b φ x 1 M F F x = x
50 30 49 jaodan φ x K x 1 M F F x = x
51 24 50 syldan φ x 1 N + 1 F F x = x
52 13 adantr φ x 1 N + 1 F : 1 N + 1 1-1 onto 1 N + 1
53 f1of F : 1 N + 1 1-1 onto 1 N + 1 F : 1 N + 1 1 N + 1
54 13 53 syl φ F : 1 N + 1 1 N + 1
55 54 ffvelrnda φ x 1 N + 1 F x 1 N + 1
56 f1ocnvfv F : 1 N + 1 1-1 onto 1 N + 1 F x 1 N + 1 F F x = x F -1 x = F x
57 52 55 56 syl2anc φ x 1 N + 1 F F x = x F -1 x = F x
58 51 57 mpd φ x 1 N + 1 F -1 x = F x
59 16 18 58 eqfnfvd φ F -1 = F