| Step |
Hyp |
Ref |
Expression |
| 1 |
|
derang.d |
|
| 2 |
|
subfac.n |
|
| 3 |
|
fveq2 |
|
| 4 |
1 2
|
subfac0 |
|
| 5 |
3 4
|
eqtrdi |
|
| 6 |
|
fveq2 |
|
| 7 |
|
fac0 |
|
| 8 |
6 7
|
eqtrdi |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
sumeq1d |
|
| 11 |
8 10
|
oveq12d |
|
| 12 |
5 11
|
eqeq12d |
|
| 13 |
|
fv0p1e1 |
|
| 14 |
1 2
|
subfac1 |
|
| 15 |
13 14
|
eqtrdi |
|
| 16 |
|
fv0p1e1 |
|
| 17 |
|
fac1 |
|
| 18 |
16 17
|
eqtrdi |
|
| 19 |
|
oveq1 |
|
| 20 |
|
0p1e1 |
|
| 21 |
19 20
|
eqtrdi |
|
| 22 |
21
|
oveq2d |
|
| 23 |
22
|
sumeq1d |
|
| 24 |
18 23
|
oveq12d |
|
| 25 |
15 24
|
eqeq12d |
|
| 26 |
12 25
|
anbi12d |
|
| 27 |
|
fveq2 |
|
| 28 |
|
fveq2 |
|
| 29 |
|
oveq2 |
|
| 30 |
29
|
sumeq1d |
|
| 31 |
28 30
|
oveq12d |
|
| 32 |
27 31
|
eqeq12d |
|
| 33 |
|
fvoveq1 |
|
| 34 |
|
fvoveq1 |
|
| 35 |
|
oveq1 |
|
| 36 |
35
|
oveq2d |
|
| 37 |
36
|
sumeq1d |
|
| 38 |
34 37
|
oveq12d |
|
| 39 |
33 38
|
eqeq12d |
|
| 40 |
32 39
|
anbi12d |
|
| 41 |
|
fveq2 |
|
| 42 |
|
fveq2 |
|
| 43 |
|
oveq2 |
|
| 44 |
43
|
sumeq1d |
|
| 45 |
42 44
|
oveq12d |
|
| 46 |
41 45
|
eqeq12d |
|
| 47 |
|
fvoveq1 |
|
| 48 |
|
fvoveq1 |
|
| 49 |
|
oveq1 |
|
| 50 |
49
|
oveq2d |
|
| 51 |
50
|
sumeq1d |
|
| 52 |
48 51
|
oveq12d |
|
| 53 |
47 52
|
eqeq12d |
|
| 54 |
46 53
|
anbi12d |
|
| 55 |
|
fveq2 |
|
| 56 |
|
fveq2 |
|
| 57 |
|
oveq2 |
|
| 58 |
57
|
sumeq1d |
|
| 59 |
56 58
|
oveq12d |
|
| 60 |
55 59
|
eqeq12d |
|
| 61 |
|
fvoveq1 |
|
| 62 |
|
fvoveq1 |
|
| 63 |
|
oveq1 |
|
| 64 |
63
|
oveq2d |
|
| 65 |
64
|
sumeq1d |
|
| 66 |
62 65
|
oveq12d |
|
| 67 |
61 66
|
eqeq12d |
|
| 68 |
60 67
|
anbi12d |
|
| 69 |
|
0z |
|
| 70 |
|
ax-1cn |
|
| 71 |
|
oveq2 |
|
| 72 |
|
neg1cn |
|
| 73 |
|
exp0 |
|
| 74 |
72 73
|
ax-mp |
|
| 75 |
71 74
|
eqtrdi |
|
| 76 |
|
fveq2 |
|
| 77 |
76 7
|
eqtrdi |
|
| 78 |
75 77
|
oveq12d |
|
| 79 |
70
|
div1i |
|
| 80 |
78 79
|
eqtrdi |
|
| 81 |
80
|
fsum1 |
|
| 82 |
69 70 81
|
mp2an |
|
| 83 |
82
|
oveq2i |
|
| 84 |
|
1t1e1 |
|
| 85 |
83 84
|
eqtr2i |
|
| 86 |
|
nn0uz |
|
| 87 |
|
1e0p1 |
|
| 88 |
|
oveq2 |
|
| 89 |
|
exp1 |
|
| 90 |
72 89
|
ax-mp |
|
| 91 |
88 90
|
eqtrdi |
|
| 92 |
|
fveq2 |
|
| 93 |
92 17
|
eqtrdi |
|
| 94 |
91 93
|
oveq12d |
|
| 95 |
72
|
div1i |
|
| 96 |
94 95
|
eqtrdi |
|
| 97 |
|
neg1rr |
|
| 98 |
|
reexpcl |
|
| 99 |
97 98
|
mpan |
|
| 100 |
|
faccl |
|
| 101 |
99 100
|
nndivred |
|
| 102 |
101
|
recnd |
|
| 103 |
102
|
adantl |
|
| 104 |
|
0nn0 |
|
| 105 |
104 82
|
pm3.2i |
|
| 106 |
105
|
a1i |
|
| 107 |
|
1pneg1e0 |
|
| 108 |
107
|
a1i |
|
| 109 |
86 87 96 103 106 108
|
fsump1i |
|
| 110 |
109
|
mptru |
|
| 111 |
110
|
simpri |
|
| 112 |
111
|
oveq2i |
|
| 113 |
70
|
mul01i |
|
| 114 |
112 113
|
eqtr2i |
|
| 115 |
85 114
|
pm3.2i |
|
| 116 |
|
simpr |
|
| 117 |
116
|
a1i |
|
| 118 |
|
oveq12 |
|
| 119 |
118
|
ancoms |
|
| 120 |
119
|
oveq2d |
|
| 121 |
|
nn0p1nn |
|
| 122 |
1 2
|
subfacp1 |
|
| 123 |
121 122
|
syl |
|
| 124 |
|
nn0cn |
|
| 125 |
|
pncan |
|
| 126 |
124 70 125
|
sylancl |
|
| 127 |
126
|
fveq2d |
|
| 128 |
127
|
oveq2d |
|
| 129 |
128
|
oveq2d |
|
| 130 |
123 129
|
eqtrd |
|
| 131 |
|
peano2nn0 |
|
| 132 |
|
peano2nn0 |
|
| 133 |
131 132
|
syl |
|
| 134 |
|
faccl |
|
| 135 |
133 134
|
syl |
|
| 136 |
135
|
nncnd |
|
| 137 |
|
fzfid |
|
| 138 |
|
elfznn0 |
|
| 139 |
138
|
adantl |
|
| 140 |
139 102
|
syl |
|
| 141 |
137 140
|
fsumcl |
|
| 142 |
|
expcl |
|
| 143 |
72 133 142
|
sylancr |
|
| 144 |
135
|
nnne0d |
|
| 145 |
143 136 144
|
divcld |
|
| 146 |
136 141 145
|
adddid |
|
| 147 |
|
id |
|
| 148 |
147 86
|
eleqtrdi |
|
| 149 |
|
oveq2 |
|
| 150 |
|
fveq2 |
|
| 151 |
149 150
|
oveq12d |
|
| 152 |
148 140 151
|
fsump1 |
|
| 153 |
152
|
oveq2d |
|
| 154 |
|
fzfid |
|
| 155 |
|
elfznn0 |
|
| 156 |
155
|
adantl |
|
| 157 |
156 102
|
syl |
|
| 158 |
154 157
|
fsumcl |
|
| 159 |
|
expcl |
|
| 160 |
72 131 159
|
sylancr |
|
| 161 |
|
faccl |
|
| 162 |
131 161
|
syl |
|
| 163 |
162
|
nncnd |
|
| 164 |
162
|
nnne0d |
|
| 165 |
160 163 164
|
divcld |
|
| 166 |
136 158 165
|
adddid |
|
| 167 |
|
facp1 |
|
| 168 |
131 167
|
syl |
|
| 169 |
|
facp1 |
|
| 170 |
|
faccl |
|
| 171 |
170
|
nncnd |
|
| 172 |
121
|
nncnd |
|
| 173 |
171 172
|
mulcomd |
|
| 174 |
169 173
|
eqtrd |
|
| 175 |
174
|
oveq1d |
|
| 176 |
133
|
nn0cnd |
|
| 177 |
172 171 176
|
mulassd |
|
| 178 |
168 175 177
|
3eqtrd |
|
| 179 |
178
|
oveq1d |
|
| 180 |
136 160 163 164
|
div12d |
|
| 181 |
168
|
oveq1d |
|
| 182 |
176 163 164
|
divcan3d |
|
| 183 |
181 182
|
eqtrd |
|
| 184 |
183
|
oveq2d |
|
| 185 |
180 184
|
eqtrd |
|
| 186 |
179 185
|
oveq12d |
|
| 187 |
153 166 186
|
3eqtrd |
|
| 188 |
143 136 144
|
divcan2d |
|
| 189 |
187 188
|
oveq12d |
|
| 190 |
171 176
|
mulcld |
|
| 191 |
172 190 158
|
mulassd |
|
| 192 |
72
|
a1i |
|
| 193 |
160 176 192
|
adddid |
|
| 194 |
|
negsub |
|
| 195 |
176 70 194
|
sylancl |
|
| 196 |
|
pncan |
|
| 197 |
172 70 196
|
sylancl |
|
| 198 |
195 197
|
eqtrd |
|
| 199 |
198
|
oveq2d |
|
| 200 |
193 199
|
eqtr3d |
|
| 201 |
|
expp1 |
|
| 202 |
72 131 201
|
sylancr |
|
| 203 |
202
|
oveq2d |
|
| 204 |
172 160
|
mulcomd |
|
| 205 |
200 203 204
|
3eqtr4d |
|
| 206 |
191 205
|
oveq12d |
|
| 207 |
172 190
|
mulcld |
|
| 208 |
207 158
|
mulcld |
|
| 209 |
160 176
|
mulcld |
|
| 210 |
208 209 143
|
addassd |
|
| 211 |
190 158
|
mulcld |
|
| 212 |
172 211 160
|
adddid |
|
| 213 |
206 210 212
|
3eqtr4d |
|
| 214 |
146 189 213
|
3eqtrd |
|
| 215 |
131 86
|
eleqtrdi |
|
| 216 |
|
elfznn0 |
|
| 217 |
216
|
adantl |
|
| 218 |
217 102
|
syl |
|
| 219 |
|
oveq2 |
|
| 220 |
|
fveq2 |
|
| 221 |
219 220
|
oveq12d |
|
| 222 |
215 218 221
|
fsump1 |
|
| 223 |
222
|
oveq2d |
|
| 224 |
163 158
|
mulcld |
|
| 225 |
171 158
|
mulcld |
|
| 226 |
224 160 225
|
add32d |
|
| 227 |
152
|
oveq2d |
|
| 228 |
163 158 165
|
adddid |
|
| 229 |
160 163 164
|
divcan2d |
|
| 230 |
229
|
oveq2d |
|
| 231 |
227 228 230
|
3eqtrd |
|
| 232 |
231
|
oveq1d |
|
| 233 |
70
|
a1i |
|
| 234 |
171 172 233
|
adddid |
|
| 235 |
169
|
eqcomd |
|
| 236 |
171
|
mulridd |
|
| 237 |
235 236
|
oveq12d |
|
| 238 |
234 237
|
eqtrd |
|
| 239 |
238
|
oveq1d |
|
| 240 |
163 171 158
|
adddird |
|
| 241 |
239 240
|
eqtrd |
|
| 242 |
241
|
oveq1d |
|
| 243 |
226 232 242
|
3eqtr4d |
|
| 244 |
243
|
oveq2d |
|
| 245 |
214 223 244
|
3eqtr4d |
|
| 246 |
130 245
|
eqeq12d |
|
| 247 |
120 246
|
imbitrrid |
|
| 248 |
117 247
|
jcad |
|
| 249 |
26 40 54 68 115 248
|
nn0ind |
|
| 250 |
249
|
simpld |
|