Metamath Proof Explorer


Theorem subfacval2

Description: A closed-form expression for the subfactorial. (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Hypotheses derang.d D = x Fin f | f : x 1-1 onto x y x f y y
subfac.n S = n 0 D 1 n
Assertion subfacval2 N 0 S N = N ! k = 0 N 1 k k !

Proof

Step Hyp Ref Expression
1 derang.d D = x Fin f | f : x 1-1 onto x y x f y y
2 subfac.n S = n 0 D 1 n
3 fveq2 x = 0 S x = S 0
4 1 2 subfac0 S 0 = 1
5 3 4 eqtrdi x = 0 S x = 1
6 fveq2 x = 0 x ! = 0 !
7 fac0 0 ! = 1
8 6 7 eqtrdi x = 0 x ! = 1
9 oveq2 x = 0 0 x = 0 0
10 9 sumeq1d x = 0 k = 0 x 1 k k ! = k = 0 0 1 k k !
11 8 10 oveq12d x = 0 x ! k = 0 x 1 k k ! = 1 k = 0 0 1 k k !
12 5 11 eqeq12d x = 0 S x = x ! k = 0 x 1 k k ! 1 = 1 k = 0 0 1 k k !
13 fv0p1e1 x = 0 S x + 1 = S 1
14 1 2 subfac1 S 1 = 0
15 13 14 eqtrdi x = 0 S x + 1 = 0
16 fv0p1e1 x = 0 x + 1 ! = 1 !
17 fac1 1 ! = 1
18 16 17 eqtrdi x = 0 x + 1 ! = 1
19 oveq1 x = 0 x + 1 = 0 + 1
20 0p1e1 0 + 1 = 1
21 19 20 eqtrdi x = 0 x + 1 = 1
22 21 oveq2d x = 0 0 x + 1 = 0 1
23 22 sumeq1d x = 0 k = 0 x + 1 1 k k ! = k = 0 1 1 k k !
24 18 23 oveq12d x = 0 x + 1 ! k = 0 x + 1 1 k k ! = 1 k = 0 1 1 k k !
25 15 24 eqeq12d x = 0 S x + 1 = x + 1 ! k = 0 x + 1 1 k k ! 0 = 1 k = 0 1 1 k k !
26 12 25 anbi12d x = 0 S x = x ! k = 0 x 1 k k ! S x + 1 = x + 1 ! k = 0 x + 1 1 k k ! 1 = 1 k = 0 0 1 k k ! 0 = 1 k = 0 1 1 k k !
27 fveq2 x = m S x = S m
28 fveq2 x = m x ! = m !
29 oveq2 x = m 0 x = 0 m
30 29 sumeq1d x = m k = 0 x 1 k k ! = k = 0 m 1 k k !
31 28 30 oveq12d x = m x ! k = 0 x 1 k k ! = m ! k = 0 m 1 k k !
32 27 31 eqeq12d x = m S x = x ! k = 0 x 1 k k ! S m = m ! k = 0 m 1 k k !
33 fvoveq1 x = m S x + 1 = S m + 1
34 fvoveq1 x = m x + 1 ! = m + 1 !
35 oveq1 x = m x + 1 = m + 1
36 35 oveq2d x = m 0 x + 1 = 0 m + 1
37 36 sumeq1d x = m k = 0 x + 1 1 k k ! = k = 0 m + 1 1 k k !
38 34 37 oveq12d x = m x + 1 ! k = 0 x + 1 1 k k ! = m + 1 ! k = 0 m + 1 1 k k !
39 33 38 eqeq12d x = m S x + 1 = x + 1 ! k = 0 x + 1 1 k k ! S m + 1 = m + 1 ! k = 0 m + 1 1 k k !
40 32 39 anbi12d x = m S x = x ! k = 0 x 1 k k ! S x + 1 = x + 1 ! k = 0 x + 1 1 k k ! S m = m ! k = 0 m 1 k k ! S m + 1 = m + 1 ! k = 0 m + 1 1 k k !
41 fveq2 x = m + 1 S x = S m + 1
42 fveq2 x = m + 1 x ! = m + 1 !
43 oveq2 x = m + 1 0 x = 0 m + 1
44 43 sumeq1d x = m + 1 k = 0 x 1 k k ! = k = 0 m + 1 1 k k !
45 42 44 oveq12d x = m + 1 x ! k = 0 x 1 k k ! = m + 1 ! k = 0 m + 1 1 k k !
46 41 45 eqeq12d x = m + 1 S x = x ! k = 0 x 1 k k ! S m + 1 = m + 1 ! k = 0 m + 1 1 k k !
47 fvoveq1 x = m + 1 S x + 1 = S m + 1 + 1
48 fvoveq1 x = m + 1 x + 1 ! = m + 1 + 1 !
49 oveq1 x = m + 1 x + 1 = m + 1 + 1
50 49 oveq2d x = m + 1 0 x + 1 = 0 m + 1 + 1
51 50 sumeq1d x = m + 1 k = 0 x + 1 1 k k ! = k = 0 m + 1 + 1 1 k k !
52 48 51 oveq12d x = m + 1 x + 1 ! k = 0 x + 1 1 k k ! = m + 1 + 1 ! k = 0 m + 1 + 1 1 k k !
53 47 52 eqeq12d x = m + 1 S x + 1 = x + 1 ! k = 0 x + 1 1 k k ! S m + 1 + 1 = m + 1 + 1 ! k = 0 m + 1 + 1 1 k k !
54 46 53 anbi12d x = m + 1 S x = x ! k = 0 x 1 k k ! S x + 1 = x + 1 ! k = 0 x + 1 1 k k ! S m + 1 = m + 1 ! k = 0 m + 1 1 k k ! S m + 1 + 1 = m + 1 + 1 ! k = 0 m + 1 + 1 1 k k !
55 fveq2 x = N S x = S N
56 fveq2 x = N x ! = N !
57 oveq2 x = N 0 x = 0 N
58 57 sumeq1d x = N k = 0 x 1 k k ! = k = 0 N 1 k k !
59 56 58 oveq12d x = N x ! k = 0 x 1 k k ! = N ! k = 0 N 1 k k !
60 55 59 eqeq12d x = N S x = x ! k = 0 x 1 k k ! S N = N ! k = 0 N 1 k k !
61 fvoveq1 x = N S x + 1 = S N + 1
62 fvoveq1 x = N x + 1 ! = N + 1 !
63 oveq1 x = N x + 1 = N + 1
64 63 oveq2d x = N 0 x + 1 = 0 N + 1
65 64 sumeq1d x = N k = 0 x + 1 1 k k ! = k = 0 N + 1 1 k k !
66 62 65 oveq12d x = N x + 1 ! k = 0 x + 1 1 k k ! = N + 1 ! k = 0 N + 1 1 k k !
67 61 66 eqeq12d x = N S x + 1 = x + 1 ! k = 0 x + 1 1 k k ! S N + 1 = N + 1 ! k = 0 N + 1 1 k k !
68 60 67 anbi12d x = N S x = x ! k = 0 x 1 k k ! S x + 1 = x + 1 ! k = 0 x + 1 1 k k ! S N = N ! k = 0 N 1 k k ! S N + 1 = N + 1 ! k = 0 N + 1 1 k k !
69 0z 0
70 ax-1cn 1
71 oveq2 k = 0 1 k = 1 0
72 neg1cn 1
73 exp0 1 1 0 = 1
74 72 73 ax-mp 1 0 = 1
75 71 74 eqtrdi k = 0 1 k = 1
76 fveq2 k = 0 k ! = 0 !
77 76 7 eqtrdi k = 0 k ! = 1
78 75 77 oveq12d k = 0 1 k k ! = 1 1
79 70 div1i 1 1 = 1
80 78 79 eqtrdi k = 0 1 k k ! = 1
81 80 fsum1 0 1 k = 0 0 1 k k ! = 1
82 69 70 81 mp2an k = 0 0 1 k k ! = 1
83 82 oveq2i 1 k = 0 0 1 k k ! = 1 1
84 1t1e1 1 1 = 1
85 83 84 eqtr2i 1 = 1 k = 0 0 1 k k !
86 nn0uz 0 = 0
87 1e0p1 1 = 0 + 1
88 oveq2 k = 1 1 k = 1 1
89 exp1 1 1 1 = 1
90 72 89 ax-mp 1 1 = 1
91 88 90 eqtrdi k = 1 1 k = 1
92 fveq2 k = 1 k ! = 1 !
93 92 17 eqtrdi k = 1 k ! = 1
94 91 93 oveq12d k = 1 1 k k ! = 1 1
95 72 div1i 1 1 = 1
96 94 95 eqtrdi k = 1 1 k k ! = 1
97 neg1rr 1
98 reexpcl 1 k 0 1 k
99 97 98 mpan k 0 1 k
100 faccl k 0 k !
101 99 100 nndivred k 0 1 k k !
102 101 recnd k 0 1 k k !
103 102 adantl k 0 1 k k !
104 0nn0 0 0
105 104 82 pm3.2i 0 0 k = 0 0 1 k k ! = 1
106 105 a1i 0 0 k = 0 0 1 k k ! = 1
107 1pneg1e0 1 + -1 = 0
108 107 a1i 1 + -1 = 0
109 86 87 96 103 106 108 fsump1i 1 0 k = 0 1 1 k k ! = 0
110 109 mptru 1 0 k = 0 1 1 k k ! = 0
111 110 simpri k = 0 1 1 k k ! = 0
112 111 oveq2i 1 k = 0 1 1 k k ! = 1 0
113 70 mul01i 1 0 = 0
114 112 113 eqtr2i 0 = 1 k = 0 1 1 k k !
115 85 114 pm3.2i 1 = 1 k = 0 0 1 k k ! 0 = 1 k = 0 1 1 k k !
116 simpr S m = m ! k = 0 m 1 k k ! S m + 1 = m + 1 ! k = 0 m + 1 1 k k ! S m + 1 = m + 1 ! k = 0 m + 1 1 k k !
117 116 a1i m 0 S m = m ! k = 0 m 1 k k ! S m + 1 = m + 1 ! k = 0 m + 1 1 k k ! S m + 1 = m + 1 ! k = 0 m + 1 1 k k !
118 oveq12 S m + 1 = m + 1 ! k = 0 m + 1 1 k k ! S m = m ! k = 0 m 1 k k ! S m + 1 + S m = m + 1 ! k = 0 m + 1 1 k k ! + m ! k = 0 m 1 k k !
119 118 ancoms S m = m ! k = 0 m 1 k k ! S m + 1 = m + 1 ! k = 0 m + 1 1 k k ! S m + 1 + S m = m + 1 ! k = 0 m + 1 1 k k ! + m ! k = 0 m 1 k k !
120 119 oveq2d S m = m ! k = 0 m 1 k k ! S m + 1 = m + 1 ! k = 0 m + 1 1 k k ! m + 1 S m + 1 + S m = m + 1 m + 1 ! k = 0 m + 1 1 k k ! + m ! k = 0 m 1 k k !
121 nn0p1nn m 0 m + 1
122 1 2 subfacp1 m + 1 S m + 1 + 1 = m + 1 S m + 1 + S m + 1 - 1
123 121 122 syl m 0 S m + 1 + 1 = m + 1 S m + 1 + S m + 1 - 1
124 nn0cn m 0 m
125 pncan m 1 m + 1 - 1 = m
126 124 70 125 sylancl m 0 m + 1 - 1 = m
127 126 fveq2d m 0 S m + 1 - 1 = S m
128 127 oveq2d m 0 S m + 1 + S m + 1 - 1 = S m + 1 + S m
129 128 oveq2d m 0 m + 1 S m + 1 + S m + 1 - 1 = m + 1 S m + 1 + S m
130 123 129 eqtrd m 0 S m + 1 + 1 = m + 1 S m + 1 + S m
131 peano2nn0 m 0 m + 1 0
132 peano2nn0 m + 1 0 m + 1 + 1 0
133 131 132 syl m 0 m + 1 + 1 0
134 faccl m + 1 + 1 0 m + 1 + 1 !
135 133 134 syl m 0 m + 1 + 1 !
136 135 nncnd m 0 m + 1 + 1 !
137 fzfid m 0 0 m + 1 Fin
138 elfznn0 k 0 m + 1 k 0
139 138 adantl m 0 k 0 m + 1 k 0
140 139 102 syl m 0 k 0 m + 1 1 k k !
141 137 140 fsumcl m 0 k = 0 m + 1 1 k k !
142 expcl 1 m + 1 + 1 0 1 m + 1 + 1
143 72 133 142 sylancr m 0 1 m + 1 + 1
144 135 nnne0d m 0 m + 1 + 1 ! 0
145 143 136 144 divcld m 0 1 m + 1 + 1 m + 1 + 1 !
146 136 141 145 adddid m 0 m + 1 + 1 ! k = 0 m + 1 1 k k ! + 1 m + 1 + 1 m + 1 + 1 ! = m + 1 + 1 ! k = 0 m + 1 1 k k ! + m + 1 + 1 ! 1 m + 1 + 1 m + 1 + 1 !
147 id m 0 m 0
148 147 86 eleqtrdi m 0 m 0
149 oveq2 k = m + 1 1 k = 1 m + 1
150 fveq2 k = m + 1 k ! = m + 1 !
151 149 150 oveq12d k = m + 1 1 k k ! = 1 m + 1 m + 1 !
152 148 140 151 fsump1 m 0 k = 0 m + 1 1 k k ! = k = 0 m 1 k k ! + 1 m + 1 m + 1 !
153 152 oveq2d m 0 m + 1 + 1 ! k = 0 m + 1 1 k k ! = m + 1 + 1 ! k = 0 m 1 k k ! + 1 m + 1 m + 1 !
154 fzfid m 0 0 m Fin
155 elfznn0 k 0 m k 0
156 155 adantl m 0 k 0 m k 0
157 156 102 syl m 0 k 0 m 1 k k !
158 154 157 fsumcl m 0 k = 0 m 1 k k !
159 expcl 1 m + 1 0 1 m + 1
160 72 131 159 sylancr m 0 1 m + 1
161 faccl m + 1 0 m + 1 !
162 131 161 syl m 0 m + 1 !
163 162 nncnd m 0 m + 1 !
164 162 nnne0d m 0 m + 1 ! 0
165 160 163 164 divcld m 0 1 m + 1 m + 1 !
166 136 158 165 adddid m 0 m + 1 + 1 ! k = 0 m 1 k k ! + 1 m + 1 m + 1 ! = m + 1 + 1 ! k = 0 m 1 k k ! + m + 1 + 1 ! 1 m + 1 m + 1 !
167 facp1 m + 1 0 m + 1 + 1 ! = m + 1 ! m + 1 + 1
168 131 167 syl m 0 m + 1 + 1 ! = m + 1 ! m + 1 + 1
169 facp1 m 0 m + 1 ! = m ! m + 1
170 faccl m 0 m !
171 170 nncnd m 0 m !
172 121 nncnd m 0 m + 1
173 171 172 mulcomd m 0 m ! m + 1 = m + 1 m !
174 169 173 eqtrd m 0 m + 1 ! = m + 1 m !
175 174 oveq1d m 0 m + 1 ! m + 1 + 1 = m + 1 m ! m + 1 + 1
176 133 nn0cnd m 0 m + 1 + 1
177 172 171 176 mulassd m 0 m + 1 m ! m + 1 + 1 = m + 1 m ! m + 1 + 1
178 168 175 177 3eqtrd m 0 m + 1 + 1 ! = m + 1 m ! m + 1 + 1
179 178 oveq1d m 0 m + 1 + 1 ! k = 0 m 1 k k ! = m + 1 m ! m + 1 + 1 k = 0 m 1 k k !
180 136 160 163 164 div12d m 0 m + 1 + 1 ! 1 m + 1 m + 1 ! = 1 m + 1 m + 1 + 1 ! m + 1 !
181 168 oveq1d m 0 m + 1 + 1 ! m + 1 ! = m + 1 ! m + 1 + 1 m + 1 !
182 176 163 164 divcan3d m 0 m + 1 ! m + 1 + 1 m + 1 ! = m + 1 + 1
183 181 182 eqtrd m 0 m + 1 + 1 ! m + 1 ! = m + 1 + 1
184 183 oveq2d m 0 1 m + 1 m + 1 + 1 ! m + 1 ! = 1 m + 1 m + 1 + 1
185 180 184 eqtrd m 0 m + 1 + 1 ! 1 m + 1 m + 1 ! = 1 m + 1 m + 1 + 1
186 179 185 oveq12d m 0 m + 1 + 1 ! k = 0 m 1 k k ! + m + 1 + 1 ! 1 m + 1 m + 1 ! = m + 1 m ! m + 1 + 1 k = 0 m 1 k k ! + 1 m + 1 m + 1 + 1
187 153 166 186 3eqtrd m 0 m + 1 + 1 ! k = 0 m + 1 1 k k ! = m + 1 m ! m + 1 + 1 k = 0 m 1 k k ! + 1 m + 1 m + 1 + 1
188 143 136 144 divcan2d m 0 m + 1 + 1 ! 1 m + 1 + 1 m + 1 + 1 ! = 1 m + 1 + 1
189 187 188 oveq12d m 0 m + 1 + 1 ! k = 0 m + 1 1 k k ! + m + 1 + 1 ! 1 m + 1 + 1 m + 1 + 1 ! = m + 1 m ! m + 1 + 1 k = 0 m 1 k k ! + 1 m + 1 m + 1 + 1 + 1 m + 1 + 1
190 171 176 mulcld m 0 m ! m + 1 + 1
191 172 190 158 mulassd m 0 m + 1 m ! m + 1 + 1 k = 0 m 1 k k ! = m + 1 m ! m + 1 + 1 k = 0 m 1 k k !
192 72 a1i m 0 1
193 160 176 192 adddid m 0 1 m + 1 m + 1 + 1 + -1 = 1 m + 1 m + 1 + 1 + 1 m + 1 -1
194 negsub m + 1 + 1 1 m + 1 + 1 + -1 = m + 1 + 1 - 1
195 176 70 194 sylancl m 0 m + 1 + 1 + -1 = m + 1 + 1 - 1
196 pncan m + 1 1 m + 1 + 1 - 1 = m + 1
197 172 70 196 sylancl m 0 m + 1 + 1 - 1 = m + 1
198 195 197 eqtrd m 0 m + 1 + 1 + -1 = m + 1
199 198 oveq2d m 0 1 m + 1 m + 1 + 1 + -1 = 1 m + 1 m + 1
200 193 199 eqtr3d m 0 1 m + 1 m + 1 + 1 + 1 m + 1 -1 = 1 m + 1 m + 1
201 expp1 1 m + 1 0 1 m + 1 + 1 = 1 m + 1 -1
202 72 131 201 sylancr m 0 1 m + 1 + 1 = 1 m + 1 -1
203 202 oveq2d m 0 1 m + 1 m + 1 + 1 + 1 m + 1 + 1 = 1 m + 1 m + 1 + 1 + 1 m + 1 -1
204 172 160 mulcomd m 0 m + 1 1 m + 1 = 1 m + 1 m + 1
205 200 203 204 3eqtr4d m 0 1 m + 1 m + 1 + 1 + 1 m + 1 + 1 = m + 1 1 m + 1
206 191 205 oveq12d m 0 m + 1 m ! m + 1 + 1 k = 0 m 1 k k ! + 1 m + 1 m + 1 + 1 + 1 m + 1 + 1 = m + 1 m ! m + 1 + 1 k = 0 m 1 k k ! + m + 1 1 m + 1
207 172 190 mulcld m 0 m + 1 m ! m + 1 + 1
208 207 158 mulcld m 0 m + 1 m ! m + 1 + 1 k = 0 m 1 k k !
209 160 176 mulcld m 0 1 m + 1 m + 1 + 1
210 208 209 143 addassd m 0 m + 1 m ! m + 1 + 1 k = 0 m 1 k k ! + 1 m + 1 m + 1 + 1 + 1 m + 1 + 1 = m + 1 m ! m + 1 + 1 k = 0 m 1 k k ! + 1 m + 1 m + 1 + 1 + 1 m + 1 + 1
211 190 158 mulcld m 0 m ! m + 1 + 1 k = 0 m 1 k k !
212 172 211 160 adddid m 0 m + 1 m ! m + 1 + 1 k = 0 m 1 k k ! + 1 m + 1 = m + 1 m ! m + 1 + 1 k = 0 m 1 k k ! + m + 1 1 m + 1
213 206 210 212 3eqtr4d m 0 m + 1 m ! m + 1 + 1 k = 0 m 1 k k ! + 1 m + 1 m + 1 + 1 + 1 m + 1 + 1 = m + 1 m ! m + 1 + 1 k = 0 m 1 k k ! + 1 m + 1
214 146 189 213 3eqtrd m 0 m + 1 + 1 ! k = 0 m + 1 1 k k ! + 1 m + 1 + 1 m + 1 + 1 ! = m + 1 m ! m + 1 + 1 k = 0 m 1 k k ! + 1 m + 1
215 131 86 eleqtrdi m 0 m + 1 0
216 elfznn0 k 0 m + 1 + 1 k 0
217 216 adantl m 0 k 0 m + 1 + 1 k 0
218 217 102 syl m 0 k 0 m + 1 + 1 1 k k !
219 oveq2 k = m + 1 + 1 1 k = 1 m + 1 + 1
220 fveq2 k = m + 1 + 1 k ! = m + 1 + 1 !
221 219 220 oveq12d k = m + 1 + 1 1 k k ! = 1 m + 1 + 1 m + 1 + 1 !
222 215 218 221 fsump1 m 0 k = 0 m + 1 + 1 1 k k ! = k = 0 m + 1 1 k k ! + 1 m + 1 + 1 m + 1 + 1 !
223 222 oveq2d m 0 m + 1 + 1 ! k = 0 m + 1 + 1 1 k k ! = m + 1 + 1 ! k = 0 m + 1 1 k k ! + 1 m + 1 + 1 m + 1 + 1 !
224 163 158 mulcld m 0 m + 1 ! k = 0 m 1 k k !
225 171 158 mulcld m 0 m ! k = 0 m 1 k k !
226 224 160 225 add32d m 0 m + 1 ! k = 0 m 1 k k ! + 1 m + 1 + m ! k = 0 m 1 k k ! = m + 1 ! k = 0 m 1 k k ! + m ! k = 0 m 1 k k ! + 1 m + 1
227 152 oveq2d m 0 m + 1 ! k = 0 m + 1 1 k k ! = m + 1 ! k = 0 m 1 k k ! + 1 m + 1 m + 1 !
228 163 158 165 adddid m 0 m + 1 ! k = 0 m 1 k k ! + 1 m + 1 m + 1 ! = m + 1 ! k = 0 m 1 k k ! + m + 1 ! 1 m + 1 m + 1 !
229 160 163 164 divcan2d m 0 m + 1 ! 1 m + 1 m + 1 ! = 1 m + 1
230 229 oveq2d m 0 m + 1 ! k = 0 m 1 k k ! + m + 1 ! 1 m + 1 m + 1 ! = m + 1 ! k = 0 m 1 k k ! + 1 m + 1
231 227 228 230 3eqtrd m 0 m + 1 ! k = 0 m + 1 1 k k ! = m + 1 ! k = 0 m 1 k k ! + 1 m + 1
232 231 oveq1d m 0 m + 1 ! k = 0 m + 1 1 k k ! + m ! k = 0 m 1 k k ! = m + 1 ! k = 0 m 1 k k ! + 1 m + 1 + m ! k = 0 m 1 k k !
233 70 a1i m 0 1
234 171 172 233 adddid m 0 m ! m + 1 + 1 = m ! m + 1 + m ! 1
235 169 eqcomd m 0 m ! m + 1 = m + 1 !
236 171 mulid1d m 0 m ! 1 = m !
237 235 236 oveq12d m 0 m ! m + 1 + m ! 1 = m + 1 ! + m !
238 234 237 eqtrd m 0 m ! m + 1 + 1 = m + 1 ! + m !
239 238 oveq1d m 0 m ! m + 1 + 1 k = 0 m 1 k k ! = m + 1 ! + m ! k = 0 m 1 k k !
240 163 171 158 adddird m 0 m + 1 ! + m ! k = 0 m 1 k k ! = m + 1 ! k = 0 m 1 k k ! + m ! k = 0 m 1 k k !
241 239 240 eqtrd m 0 m ! m + 1 + 1 k = 0 m 1 k k ! = m + 1 ! k = 0 m 1 k k ! + m ! k = 0 m 1 k k !
242 241 oveq1d m 0 m ! m + 1 + 1 k = 0 m 1 k k ! + 1 m + 1 = m + 1 ! k = 0 m 1 k k ! + m ! k = 0 m 1 k k ! + 1 m + 1
243 226 232 242 3eqtr4d m 0 m + 1 ! k = 0 m + 1 1 k k ! + m ! k = 0 m 1 k k ! = m ! m + 1 + 1 k = 0 m 1 k k ! + 1 m + 1
244 243 oveq2d m 0 m + 1 m + 1 ! k = 0 m + 1 1 k k ! + m ! k = 0 m 1 k k ! = m + 1 m ! m + 1 + 1 k = 0 m 1 k k ! + 1 m + 1
245 214 223 244 3eqtr4d m 0 m + 1 + 1 ! k = 0 m + 1 + 1 1 k k ! = m + 1 m + 1 ! k = 0 m + 1 1 k k ! + m ! k = 0 m 1 k k !
246 130 245 eqeq12d m 0 S m + 1 + 1 = m + 1 + 1 ! k = 0 m + 1 + 1 1 k k ! m + 1 S m + 1 + S m = m + 1 m + 1 ! k = 0 m + 1 1 k k ! + m ! k = 0 m 1 k k !
247 120 246 syl5ibr m 0 S m = m ! k = 0 m 1 k k ! S m + 1 = m + 1 ! k = 0 m + 1 1 k k ! S m + 1 + 1 = m + 1 + 1 ! k = 0 m + 1 + 1 1 k k !
248 117 247 jcad m 0 S m = m ! k = 0 m 1 k k ! S m + 1 = m + 1 ! k = 0 m + 1 1 k k ! S m + 1 = m + 1 ! k = 0 m + 1 1 k k ! S m + 1 + 1 = m + 1 + 1 ! k = 0 m + 1 + 1 1 k k !
249 26 40 54 68 115 248 nn0ind N 0 S N = N ! k = 0 N 1 k k ! S N + 1 = N + 1 ! k = 0 N + 1 1 k k !
250 249 simpld N 0 S N = N ! k = 0 N 1 k k !