Metamath Proof Explorer


Theorem subg0cl

Description: The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis subg0cl.i 0 ˙ = 0 G
Assertion subg0cl S SubGrp G 0 ˙ S

Proof

Step Hyp Ref Expression
1 subg0cl.i 0 ˙ = 0 G
2 eqid G 𝑠 S = G 𝑠 S
3 2 subggrp S SubGrp G G 𝑠 S Grp
4 eqid Base G 𝑠 S = Base G 𝑠 S
5 eqid 0 G 𝑠 S = 0 G 𝑠 S
6 4 5 grpidcl G 𝑠 S Grp 0 G 𝑠 S Base G 𝑠 S
7 3 6 syl S SubGrp G 0 G 𝑠 S Base G 𝑠 S
8 2 1 subg0 S SubGrp G 0 ˙ = 0 G 𝑠 S
9 2 subgbas S SubGrp G S = Base G 𝑠 S
10 7 8 9 3eltr4d S SubGrp G 0 ˙ S