Metamath Proof Explorer


Theorem subgabl

Description: A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014)

Ref Expression
Hypothesis subgabl.h H = G 𝑠 S
Assertion subgabl G Abel S SubGrp G H Abel

Proof

Step Hyp Ref Expression
1 subgabl.h H = G 𝑠 S
2 1 subgbas S SubGrp G S = Base H
3 2 adantl G Abel S SubGrp G S = Base H
4 eqid + G = + G
5 1 4 ressplusg S SubGrp G + G = + H
6 5 adantl G Abel S SubGrp G + G = + H
7 1 subggrp S SubGrp G H Grp
8 7 adantl G Abel S SubGrp G H Grp
9 simp1l G Abel S SubGrp G x S y S G Abel
10 simp1r G Abel S SubGrp G x S y S S SubGrp G
11 eqid Base G = Base G
12 11 subgss S SubGrp G S Base G
13 10 12 syl G Abel S SubGrp G x S y S S Base G
14 simp2 G Abel S SubGrp G x S y S x S
15 13 14 sseldd G Abel S SubGrp G x S y S x Base G
16 simp3 G Abel S SubGrp G x S y S y S
17 13 16 sseldd G Abel S SubGrp G x S y S y Base G
18 11 4 ablcom G Abel x Base G y Base G x + G y = y + G x
19 9 15 17 18 syl3anc G Abel S SubGrp G x S y S x + G y = y + G x
20 3 6 8 19 isabld G Abel S SubGrp G H Abel