Metamath Proof Explorer


Theorem subgcl

Description: A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis subgcl.p + ˙ = + G
Assertion subgcl S SubGrp G X S Y S X + ˙ Y S

Proof

Step Hyp Ref Expression
1 subgcl.p + ˙ = + G
2 eqid G 𝑠 S = G 𝑠 S
3 2 subggrp S SubGrp G G 𝑠 S Grp
4 3 3ad2ant1 S SubGrp G X S Y S G 𝑠 S Grp
5 simp2 S SubGrp G X S Y S X S
6 2 subgbas S SubGrp G S = Base G 𝑠 S
7 6 3ad2ant1 S SubGrp G X S Y S S = Base G 𝑠 S
8 5 7 eleqtrd S SubGrp G X S Y S X Base G 𝑠 S
9 simp3 S SubGrp G X S Y S Y S
10 9 7 eleqtrd S SubGrp G X S Y S Y Base G 𝑠 S
11 eqid Base G 𝑠 S = Base G 𝑠 S
12 eqid + G 𝑠 S = + G 𝑠 S
13 11 12 grpcl G 𝑠 S Grp X Base G 𝑠 S Y Base G 𝑠 S X + G 𝑠 S Y Base G 𝑠 S
14 4 8 10 13 syl3anc S SubGrp G X S Y S X + G 𝑠 S Y Base G 𝑠 S
15 2 1 ressplusg S SubGrp G + ˙ = + G 𝑠 S
16 15 3ad2ant1 S SubGrp G X S Y S + ˙ = + G 𝑠 S
17 16 oveqd S SubGrp G X S Y S X + ˙ Y = X + G 𝑠 S Y
18 14 17 7 3eltr4d S SubGrp G X S Y S X + ˙ Y S