| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgdisj.p |
|
| 2 |
|
subgdisj.o |
|
| 3 |
|
subgdisj.z |
|
| 4 |
|
subgdisj.t |
|
| 5 |
|
subgdisj.u |
|
| 6 |
|
subgdisj.i |
|
| 7 |
|
subgdisj.s |
|
| 8 |
|
subgdisj.a |
|
| 9 |
|
subgdisj.c |
|
| 10 |
|
subgdisj.b |
|
| 11 |
|
subgdisj.d |
|
| 12 |
|
subgdisj.j |
|
| 13 |
|
eqid |
|
| 14 |
13
|
subgsubcl |
|
| 15 |
4 8 9 14
|
syl3anc |
|
| 16 |
7 9
|
sseldd |
|
| 17 |
1 3
|
cntzi |
|
| 18 |
16 10 17
|
syl2anc |
|
| 19 |
12 18
|
oveq12d |
|
| 20 |
|
subgrcl |
|
| 21 |
4 20
|
syl |
|
| 22 |
|
eqid |
|
| 23 |
22
|
subgss |
|
| 24 |
4 23
|
syl |
|
| 25 |
24 8
|
sseldd |
|
| 26 |
22
|
subgss |
|
| 27 |
5 26
|
syl |
|
| 28 |
27 10
|
sseldd |
|
| 29 |
22 1
|
grpcl |
|
| 30 |
21 25 28 29
|
syl3anc |
|
| 31 |
24 9
|
sseldd |
|
| 32 |
22 1 13
|
grpsubsub4 |
|
| 33 |
21 30 28 31 32
|
syl13anc |
|
| 34 |
12 30
|
eqeltrrd |
|
| 35 |
22 1 13
|
grpsubsub4 |
|
| 36 |
21 34 31 28 35
|
syl13anc |
|
| 37 |
19 33 36
|
3eqtr4d |
|
| 38 |
22 1 13
|
grppncan |
|
| 39 |
21 25 28 38
|
syl3anc |
|
| 40 |
39
|
oveq1d |
|
| 41 |
1 3
|
cntzi |
|
| 42 |
16 11 41
|
syl2anc |
|
| 43 |
42
|
oveq1d |
|
| 44 |
27 11
|
sseldd |
|
| 45 |
22 1 13
|
grppncan |
|
| 46 |
21 44 31 45
|
syl3anc |
|
| 47 |
43 46
|
eqtrd |
|
| 48 |
47
|
oveq1d |
|
| 49 |
37 40 48
|
3eqtr3d |
|
| 50 |
13
|
subgsubcl |
|
| 51 |
5 11 10 50
|
syl3anc |
|
| 52 |
49 51
|
eqeltrd |
|
| 53 |
15 52
|
elind |
|
| 54 |
53 6
|
eleqtrd |
|
| 55 |
|
elsni |
|
| 56 |
54 55
|
syl |
|
| 57 |
22 2 13
|
grpsubeq0 |
|
| 58 |
21 25 31 57
|
syl3anc |
|
| 59 |
56 58
|
mpbid |
|