Step |
Hyp |
Ref |
Expression |
1 |
|
subgdisj.p |
|
2 |
|
subgdisj.o |
|
3 |
|
subgdisj.z |
|
4 |
|
subgdisj.t |
|
5 |
|
subgdisj.u |
|
6 |
|
subgdisj.i |
|
7 |
|
subgdisj.s |
|
8 |
|
subgdisj.a |
|
9 |
|
subgdisj.c |
|
10 |
|
subgdisj.b |
|
11 |
|
subgdisj.d |
|
12 |
|
subgdisj.j |
|
13 |
|
eqid |
|
14 |
13
|
subgsubcl |
|
15 |
4 8 9 14
|
syl3anc |
|
16 |
7 9
|
sseldd |
|
17 |
1 3
|
cntzi |
|
18 |
16 10 17
|
syl2anc |
|
19 |
12 18
|
oveq12d |
|
20 |
|
subgrcl |
|
21 |
4 20
|
syl |
|
22 |
|
eqid |
|
23 |
22
|
subgss |
|
24 |
4 23
|
syl |
|
25 |
24 8
|
sseldd |
|
26 |
22
|
subgss |
|
27 |
5 26
|
syl |
|
28 |
27 10
|
sseldd |
|
29 |
22 1
|
grpcl |
|
30 |
21 25 28 29
|
syl3anc |
|
31 |
24 9
|
sseldd |
|
32 |
22 1 13
|
grpsubsub4 |
|
33 |
21 30 28 31 32
|
syl13anc |
|
34 |
12 30
|
eqeltrrd |
|
35 |
22 1 13
|
grpsubsub4 |
|
36 |
21 34 31 28 35
|
syl13anc |
|
37 |
19 33 36
|
3eqtr4d |
|
38 |
22 1 13
|
grppncan |
|
39 |
21 25 28 38
|
syl3anc |
|
40 |
39
|
oveq1d |
|
41 |
1 3
|
cntzi |
|
42 |
16 11 41
|
syl2anc |
|
43 |
42
|
oveq1d |
|
44 |
27 11
|
sseldd |
|
45 |
22 1 13
|
grppncan |
|
46 |
21 44 31 45
|
syl3anc |
|
47 |
43 46
|
eqtrd |
|
48 |
47
|
oveq1d |
|
49 |
37 40 48
|
3eqtr3d |
|
50 |
13
|
subgsubcl |
|
51 |
5 11 10 50
|
syl3anc |
|
52 |
49 51
|
eqeltrd |
|
53 |
15 52
|
elind |
|
54 |
53 6
|
eleqtrd |
|
55 |
|
elsni |
|
56 |
54 55
|
syl |
|
57 |
22 2 13
|
grpsubeq0 |
|
58 |
21 25 31 57
|
syl3anc |
|
59 |
56 58
|
mpbid |
|