| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgdisj.p |
|
| 2 |
|
subgdisj.o |
|
| 3 |
|
subgdisj.z |
|
| 4 |
|
subgdisj.t |
|
| 5 |
|
subgdisj.u |
|
| 6 |
|
subgdisj.i |
|
| 7 |
|
subgdisj.s |
|
| 8 |
|
subgdisj.a |
|
| 9 |
|
subgdisj.c |
|
| 10 |
|
subgdisj.b |
|
| 11 |
|
subgdisj.d |
|
| 12 |
|
subgdisj.j |
|
| 13 |
|
incom |
|
| 14 |
13 6
|
eqtr3id |
|
| 15 |
3 4 5 7
|
cntzrecd |
|
| 16 |
7 8
|
sseldd |
|
| 17 |
1 3
|
cntzi |
|
| 18 |
16 10 17
|
syl2anc |
|
| 19 |
7 9
|
sseldd |
|
| 20 |
1 3
|
cntzi |
|
| 21 |
19 11 20
|
syl2anc |
|
| 22 |
12 18 21
|
3eqtr3d |
|
| 23 |
1 2 3 5 4 14 15 10 11 8 9 22
|
subgdisj1 |
|