Step |
Hyp |
Ref |
Expression |
1 |
|
subgdisj.p |
|
2 |
|
subgdisj.o |
|
3 |
|
subgdisj.z |
|
4 |
|
subgdisj.t |
|
5 |
|
subgdisj.u |
|
6 |
|
subgdisj.i |
|
7 |
|
subgdisj.s |
|
8 |
|
subgdisj.a |
|
9 |
|
subgdisj.c |
|
10 |
|
subgdisj.b |
|
11 |
|
subgdisj.d |
|
12 |
4
|
adantr |
|
13 |
5
|
adantr |
|
14 |
6
|
adantr |
|
15 |
7
|
adantr |
|
16 |
8
|
adantr |
|
17 |
9
|
adantr |
|
18 |
10
|
adantr |
|
19 |
11
|
adantr |
|
20 |
|
simpr |
|
21 |
1 2 3 12 13 14 15 16 17 18 19 20
|
subgdisj1 |
|
22 |
1 2 3 12 13 14 15 16 17 18 19 20
|
subgdisj2 |
|
23 |
21 22
|
jca |
|
24 |
23
|
ex |
|
25 |
|
oveq12 |
|
26 |
24 25
|
impbid1 |
|