| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgdisj.p |
|
| 2 |
|
subgdisj.o |
|
| 3 |
|
subgdisj.z |
|
| 4 |
|
subgdisj.t |
|
| 5 |
|
subgdisj.u |
|
| 6 |
|
subgdisj.i |
|
| 7 |
|
subgdisj.s |
|
| 8 |
|
subgdisj.a |
|
| 9 |
|
subgdisj.c |
|
| 10 |
|
subgdisj.b |
|
| 11 |
|
subgdisj.d |
|
| 12 |
4
|
adantr |
|
| 13 |
5
|
adantr |
|
| 14 |
6
|
adantr |
|
| 15 |
7
|
adantr |
|
| 16 |
8
|
adantr |
|
| 17 |
9
|
adantr |
|
| 18 |
10
|
adantr |
|
| 19 |
11
|
adantr |
|
| 20 |
|
simpr |
|
| 21 |
1 2 3 12 13 14 15 16 17 18 19 20
|
subgdisj1 |
|
| 22 |
1 2 3 12 13 14 15 16 17 18 19 20
|
subgdisj2 |
|
| 23 |
21 22
|
jca |
|
| 24 |
23
|
ex |
|
| 25 |
|
oveq12 |
|
| 26 |
24 25
|
impbid1 |
|