Metamath Proof Explorer


Theorem subge02d

Description: Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
Assertion subge02d φ 0 B A B A

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 subge02 A B 0 B A B A
4 1 2 3 syl2anc φ 0 B A B A