| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subgga.1 |  | 
						
							| 2 |  | subgga.2 |  | 
						
							| 3 |  | subgga.3 |  | 
						
							| 4 |  | subgga.4 |  | 
						
							| 5 | 3 | subggrp |  | 
						
							| 6 | 1 | fvexi |  | 
						
							| 7 | 5 6 | jctir |  | 
						
							| 8 |  | subgrcl |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 | 1 | subgss |  | 
						
							| 11 | 10 | sselda |  | 
						
							| 12 | 11 | adantrr |  | 
						
							| 13 |  | simprr |  | 
						
							| 14 | 1 2 | grpcl |  | 
						
							| 15 | 9 12 13 14 | syl3anc |  | 
						
							| 16 | 15 | ralrimivva |  | 
						
							| 17 | 4 | fmpo |  | 
						
							| 18 | 16 17 | sylib |  | 
						
							| 19 | 3 | subgbas |  | 
						
							| 20 | 19 | xpeq1d |  | 
						
							| 21 | 20 | feq2d |  | 
						
							| 22 | 18 21 | mpbid |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 23 | subg0cl |  | 
						
							| 25 |  | oveq12 |  | 
						
							| 26 |  | ovex |  | 
						
							| 27 | 25 4 26 | ovmpoa |  | 
						
							| 28 | 24 27 | sylan |  | 
						
							| 29 | 3 23 | subg0 |  | 
						
							| 30 | 29 | oveq1d |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 1 2 23 | grplid |  | 
						
							| 33 | 8 32 | sylan |  | 
						
							| 34 | 28 31 33 | 3eqtr3d |  | 
						
							| 35 | 8 | ad2antrr |  | 
						
							| 36 | 10 | ad2antrr |  | 
						
							| 37 |  | simprl |  | 
						
							| 38 | 36 37 | sseldd |  | 
						
							| 39 |  | simprr |  | 
						
							| 40 | 36 39 | sseldd |  | 
						
							| 41 |  | simplr |  | 
						
							| 42 | 1 2 | grpass |  | 
						
							| 43 | 35 38 40 41 42 | syl13anc |  | 
						
							| 44 | 1 2 | grpcl |  | 
						
							| 45 | 35 40 41 44 | syl3anc |  | 
						
							| 46 |  | oveq12 |  | 
						
							| 47 |  | ovex |  | 
						
							| 48 | 46 4 47 | ovmpoa |  | 
						
							| 49 | 37 45 48 | syl2anc |  | 
						
							| 50 | 43 49 | eqtr4d |  | 
						
							| 51 | 2 | subgcl |  | 
						
							| 52 | 51 | 3expb |  | 
						
							| 53 | 52 | adantlr |  | 
						
							| 54 |  | oveq12 |  | 
						
							| 55 |  | ovex |  | 
						
							| 56 | 54 4 55 | ovmpoa |  | 
						
							| 57 | 53 41 56 | syl2anc |  | 
						
							| 58 |  | oveq12 |  | 
						
							| 59 |  | ovex |  | 
						
							| 60 | 58 4 59 | ovmpoa |  | 
						
							| 61 | 39 41 60 | syl2anc |  | 
						
							| 62 | 61 | oveq2d |  | 
						
							| 63 | 50 57 62 | 3eqtr4d |  | 
						
							| 64 | 63 | ralrimivva |  | 
						
							| 65 | 3 2 | ressplusg |  | 
						
							| 66 | 65 | oveqd |  | 
						
							| 67 | 66 | oveq1d |  | 
						
							| 68 | 67 | eqeq1d |  | 
						
							| 69 | 19 68 | raleqbidv |  | 
						
							| 70 | 19 69 | raleqbidv |  | 
						
							| 71 | 70 | biimpa |  | 
						
							| 72 | 64 71 | syldan |  | 
						
							| 73 | 34 72 | jca |  | 
						
							| 74 | 73 | ralrimiva |  | 
						
							| 75 | 22 74 | jca |  | 
						
							| 76 |  | eqid |  | 
						
							| 77 |  | eqid |  | 
						
							| 78 |  | eqid |  | 
						
							| 79 | 76 77 78 | isga |  | 
						
							| 80 | 7 75 79 | sylanbrc |  |