Metamath Proof Explorer


Theorem subggrp

Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis subggrp.h H = G 𝑠 S
Assertion subggrp S SubGrp G H Grp

Proof

Step Hyp Ref Expression
1 subggrp.h H = G 𝑠 S
2 eqid Base G = Base G
3 2 issubg S SubGrp G G Grp S Base G G 𝑠 S Grp
4 3 simp3bi S SubGrp G G 𝑠 S Grp
5 1 4 eqeltrid S SubGrp G H Grp