Database
BASIC ALGEBRAIC STRUCTURES
Groups
Subgroups and Quotient groups
subggrp
Next ⟩
subgbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
subggrp
Description:
A subgroup is a group.
(Contributed by
Mario Carneiro
, 2-Dec-2014)
Ref
Expression
Hypothesis
subggrp.h
⊢
H
=
G
↾
𝑠
S
Assertion
subggrp
⊢
S
∈
SubGrp
⁡
G
→
H
∈
Grp
Proof
Step
Hyp
Ref
Expression
1
subggrp.h
⊢
H
=
G
↾
𝑠
S
2
eqid
⊢
Base
G
=
Base
G
3
2
issubg
⊢
S
∈
SubGrp
⁡
G
↔
G
∈
Grp
∧
S
⊆
Base
G
∧
G
↾
𝑠
S
∈
Grp
4
3
simp3bi
⊢
S
∈
SubGrp
⁡
G
→
G
↾
𝑠
S
∈
Grp
5
1
4
eqeltrid
⊢
S
∈
SubGrp
⁡
G
→
H
∈
Grp