Metamath Proof Explorer


Theorem subgid

Description: A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypothesis issubg.b B = Base G
Assertion subgid G Grp B SubGrp G

Proof

Step Hyp Ref Expression
1 issubg.b B = Base G
2 id G Grp G Grp
3 ssidd G Grp B B
4 1 ressid G Grp G 𝑠 B = G
5 4 2 eqeltrd G Grp G 𝑠 B Grp
6 1 issubg B SubGrp G G Grp B B G 𝑠 B Grp
7 2 3 5 6 syl3anbrc G Grp B SubGrp G