Metamath Proof Explorer


Theorem subgint

Description: The intersection of a nonempty collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Assertion subgint S SubGrp G S S SubGrp G

Proof

Step Hyp Ref Expression
1 intssuni S S S
2 1 adantl S SubGrp G S S S
3 ssel2 S SubGrp G g S g SubGrp G
4 3 adantlr S SubGrp G S g S g SubGrp G
5 eqid Base G = Base G
6 5 subgss g SubGrp G g Base G
7 4 6 syl S SubGrp G S g S g Base G
8 7 ralrimiva S SubGrp G S g S g Base G
9 unissb S Base G g S g Base G
10 8 9 sylibr S SubGrp G S S Base G
11 2 10 sstrd S SubGrp G S S Base G
12 eqid 0 G = 0 G
13 12 subg0cl g SubGrp G 0 G g
14 4 13 syl S SubGrp G S g S 0 G g
15 14 ralrimiva S SubGrp G S g S 0 G g
16 fvex 0 G V
17 16 elint2 0 G S g S 0 G g
18 15 17 sylibr S SubGrp G S 0 G S
19 18 ne0d S SubGrp G S S
20 4 adantlr S SubGrp G S x S y S g S g SubGrp G
21 simprl S SubGrp G S x S y S x S
22 elinti x S g S x g
23 22 imp x S g S x g
24 21 23 sylan S SubGrp G S x S y S g S x g
25 simprr S SubGrp G S x S y S y S
26 elinti y S g S y g
27 26 imp y S g S y g
28 25 27 sylan S SubGrp G S x S y S g S y g
29 eqid + G = + G
30 29 subgcl g SubGrp G x g y g x + G y g
31 20 24 28 30 syl3anc S SubGrp G S x S y S g S x + G y g
32 31 ralrimiva S SubGrp G S x S y S g S x + G y g
33 ovex x + G y V
34 33 elint2 x + G y S g S x + G y g
35 32 34 sylibr S SubGrp G S x S y S x + G y S
36 35 anassrs S SubGrp G S x S y S x + G y S
37 36 ralrimiva S SubGrp G S x S y S x + G y S
38 4 adantlr S SubGrp G S x S g S g SubGrp G
39 23 adantll S SubGrp G S x S g S x g
40 eqid inv g G = inv g G
41 40 subginvcl g SubGrp G x g inv g G x g
42 38 39 41 syl2anc S SubGrp G S x S g S inv g G x g
43 42 ralrimiva S SubGrp G S x S g S inv g G x g
44 fvex inv g G x V
45 44 elint2 inv g G x S g S inv g G x g
46 43 45 sylibr S SubGrp G S x S inv g G x S
47 37 46 jca S SubGrp G S x S y S x + G y S inv g G x S
48 47 ralrimiva S SubGrp G S x S y S x + G y S inv g G x S
49 ssn0 S SubGrp G S SubGrp G
50 n0 SubGrp G g g SubGrp G
51 subgrcl g SubGrp G G Grp
52 51 exlimiv g g SubGrp G G Grp
53 50 52 sylbi SubGrp G G Grp
54 5 29 40 issubg2 G Grp S SubGrp G S Base G S x S y S x + G y S inv g G x S
55 49 53 54 3syl S SubGrp G S S SubGrp G S Base G S x S y S x + G y S inv g G x S
56 11 19 48 55 mpbir3and S SubGrp G S S SubGrp G