Step |
Hyp |
Ref |
Expression |
1 |
|
intssuni |
|
2 |
1
|
adantl |
|
3 |
|
ssel2 |
|
4 |
3
|
adantlr |
|
5 |
|
eqid |
|
6 |
5
|
subgss |
|
7 |
4 6
|
syl |
|
8 |
7
|
ralrimiva |
|
9 |
|
unissb |
|
10 |
8 9
|
sylibr |
|
11 |
2 10
|
sstrd |
|
12 |
|
eqid |
|
13 |
12
|
subg0cl |
|
14 |
4 13
|
syl |
|
15 |
14
|
ralrimiva |
|
16 |
|
fvex |
|
17 |
16
|
elint2 |
|
18 |
15 17
|
sylibr |
|
19 |
18
|
ne0d |
|
20 |
4
|
adantlr |
|
21 |
|
simprl |
|
22 |
|
elinti |
|
23 |
22
|
imp |
|
24 |
21 23
|
sylan |
|
25 |
|
simprr |
|
26 |
|
elinti |
|
27 |
26
|
imp |
|
28 |
25 27
|
sylan |
|
29 |
|
eqid |
|
30 |
29
|
subgcl |
|
31 |
20 24 28 30
|
syl3anc |
|
32 |
31
|
ralrimiva |
|
33 |
|
ovex |
|
34 |
33
|
elint2 |
|
35 |
32 34
|
sylibr |
|
36 |
35
|
anassrs |
|
37 |
36
|
ralrimiva |
|
38 |
4
|
adantlr |
|
39 |
23
|
adantll |
|
40 |
|
eqid |
|
41 |
40
|
subginvcl |
|
42 |
38 39 41
|
syl2anc |
|
43 |
42
|
ralrimiva |
|
44 |
|
fvex |
|
45 |
44
|
elint2 |
|
46 |
43 45
|
sylibr |
|
47 |
37 46
|
jca |
|
48 |
47
|
ralrimiva |
|
49 |
|
ssn0 |
|
50 |
|
n0 |
|
51 |
|
subgrcl |
|
52 |
51
|
exlimiv |
|
53 |
50 52
|
sylbi |
|
54 |
5 29 40
|
issubg2 |
|
55 |
49 53 54
|
3syl |
|
56 |
11 19 48 55
|
mpbir3and |
|