Metamath Proof Explorer


Theorem subginvcl

Description: The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis subginvcl.i I = inv g G
Assertion subginvcl S SubGrp G X S I X S

Proof

Step Hyp Ref Expression
1 subginvcl.i I = inv g G
2 eqid G 𝑠 S = G 𝑠 S
3 2 subggrp S SubGrp G G 𝑠 S Grp
4 simpr S SubGrp G X S X S
5 2 subgbas S SubGrp G S = Base G 𝑠 S
6 5 adantr S SubGrp G X S S = Base G 𝑠 S
7 4 6 eleqtrd S SubGrp G X S X Base G 𝑠 S
8 eqid Base G 𝑠 S = Base G 𝑠 S
9 eqid inv g G 𝑠 S = inv g G 𝑠 S
10 8 9 grpinvcl G 𝑠 S Grp X Base G 𝑠 S inv g G 𝑠 S X Base G 𝑠 S
11 3 7 10 syl2an2r S SubGrp G X S inv g G 𝑠 S X Base G 𝑠 S
12 2 1 9 subginv S SubGrp G X S I X = inv g G 𝑠 S X
13 11 12 6 3eltr4d S SubGrp G X S I X S