Metamath Proof Explorer


Theorem subglsm

Description: The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses subglsm.h H = G 𝑠 S
subglsm.s ˙ = LSSum G
subglsm.a A = LSSum H
Assertion subglsm S SubGrp G T S U S T ˙ U = T A U

Proof

Step Hyp Ref Expression
1 subglsm.h H = G 𝑠 S
2 subglsm.s ˙ = LSSum G
3 subglsm.a A = LSSum H
4 simp11 S SubGrp G T S U S x T y U S SubGrp G
5 eqid + G = + G
6 1 5 ressplusg S SubGrp G + G = + H
7 4 6 syl S SubGrp G T S U S x T y U + G = + H
8 7 oveqd S SubGrp G T S U S x T y U x + G y = x + H y
9 8 mpoeq3dva S SubGrp G T S U S x T , y U x + G y = x T , y U x + H y
10 9 rneqd S SubGrp G T S U S ran x T , y U x + G y = ran x T , y U x + H y
11 subgrcl S SubGrp G G Grp
12 11 3ad2ant1 S SubGrp G T S U S G Grp
13 simp2 S SubGrp G T S U S T S
14 eqid Base G = Base G
15 14 subgss S SubGrp G S Base G
16 15 3ad2ant1 S SubGrp G T S U S S Base G
17 13 16 sstrd S SubGrp G T S U S T Base G
18 simp3 S SubGrp G T S U S U S
19 18 16 sstrd S SubGrp G T S U S U Base G
20 14 5 2 lsmvalx G Grp T Base G U Base G T ˙ U = ran x T , y U x + G y
21 12 17 19 20 syl3anc S SubGrp G T S U S T ˙ U = ran x T , y U x + G y
22 1 subggrp S SubGrp G H Grp
23 22 3ad2ant1 S SubGrp G T S U S H Grp
24 1 subgbas S SubGrp G S = Base H
25 24 3ad2ant1 S SubGrp G T S U S S = Base H
26 13 25 sseqtrd S SubGrp G T S U S T Base H
27 18 25 sseqtrd S SubGrp G T S U S U Base H
28 eqid Base H = Base H
29 eqid + H = + H
30 28 29 3 lsmvalx H Grp T Base H U Base H T A U = ran x T , y U x + H y
31 23 26 27 30 syl3anc S SubGrp G T S U S T A U = ran x T , y U x + H y
32 10 21 31 3eqtr4d S SubGrp G T S U S T ˙ U = T A U