Metamath Proof Explorer


Theorem subgmulg

Description: A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses subgmulgcl.t · ˙ = G
subgmulg.h H = G 𝑠 S
subgmulg.t ˙ = H
Assertion subgmulg S SubGrp G N X S N · ˙ X = N ˙ X

Proof

Step Hyp Ref Expression
1 subgmulgcl.t · ˙ = G
2 subgmulg.h H = G 𝑠 S
3 subgmulg.t ˙ = H
4 eqid 0 G = 0 G
5 2 4 subg0 S SubGrp G 0 G = 0 H
6 5 3ad2ant1 S SubGrp G N X S 0 G = 0 H
7 6 ifeq1d S SubGrp G N X S if N = 0 0 G if 0 < N seq 1 + G × X N inv g G seq 1 + G × X N = if N = 0 0 H if 0 < N seq 1 + G × X N inv g G seq 1 + G × X N
8 eqid + G = + G
9 2 8 ressplusg S SubGrp G + G = + H
10 9 3ad2ant1 S SubGrp G N X S + G = + H
11 10 seqeq2d S SubGrp G N X S seq 1 + G × X = seq 1 + H × X
12 11 adantr S SubGrp G N X S ¬ N = 0 seq 1 + G × X = seq 1 + H × X
13 12 fveq1d S SubGrp G N X S ¬ N = 0 seq 1 + G × X N = seq 1 + H × X N
14 13 ifeq1d S SubGrp G N X S ¬ N = 0 if 0 < N seq 1 + G × X N inv g G seq 1 + G × X N = if 0 < N seq 1 + H × X N inv g G seq 1 + G × X N
15 simp2 S SubGrp G N X S N
16 15 zred S SubGrp G N X S N
17 0re 0
18 axlttri N 0 N < 0 ¬ N = 0 0 < N
19 16 17 18 sylancl S SubGrp G N X S N < 0 ¬ N = 0 0 < N
20 ioran ¬ N = 0 0 < N ¬ N = 0 ¬ 0 < N
21 19 20 bitrdi S SubGrp G N X S N < 0 ¬ N = 0 ¬ 0 < N
22 21 biimpar S SubGrp G N X S ¬ N = 0 ¬ 0 < N N < 0
23 simpl1 S SubGrp G N X S N < 0 S SubGrp G
24 15 adantr S SubGrp G N X S N < 0 N
25 24 znegcld S SubGrp G N X S N < 0 N
26 16 lt0neg1d S SubGrp G N X S N < 0 0 < N
27 26 biimpa S SubGrp G N X S N < 0 0 < N
28 elnnz N N 0 < N
29 25 27 28 sylanbrc S SubGrp G N X S N < 0 N
30 eqid Base G = Base G
31 30 subgss S SubGrp G S Base G
32 31 3ad2ant1 S SubGrp G N X S S Base G
33 simp3 S SubGrp G N X S X S
34 32 33 sseldd S SubGrp G N X S X Base G
35 34 adantr S SubGrp G N X S N < 0 X Base G
36 eqid seq 1 + G × X = seq 1 + G × X
37 30 8 1 36 mulgnn N X Base G -N · ˙ X = seq 1 + G × X N
38 29 35 37 syl2anc S SubGrp G N X S N < 0 -N · ˙ X = seq 1 + G × X N
39 33 adantr S SubGrp G N X S N < 0 X S
40 1 subgmulgcl S SubGrp G N X S -N · ˙ X S
41 23 25 39 40 syl3anc S SubGrp G N X S N < 0 -N · ˙ X S
42 38 41 eqeltrrd S SubGrp G N X S N < 0 seq 1 + G × X N S
43 eqid inv g G = inv g G
44 eqid inv g H = inv g H
45 2 43 44 subginv S SubGrp G seq 1 + G × X N S inv g G seq 1 + G × X N = inv g H seq 1 + G × X N
46 23 42 45 syl2anc S SubGrp G N X S N < 0 inv g G seq 1 + G × X N = inv g H seq 1 + G × X N
47 22 46 syldan S SubGrp G N X S ¬ N = 0 ¬ 0 < N inv g G seq 1 + G × X N = inv g H seq 1 + G × X N
48 11 adantr S SubGrp G N X S ¬ N = 0 ¬ 0 < N seq 1 + G × X = seq 1 + H × X
49 48 fveq1d S SubGrp G N X S ¬ N = 0 ¬ 0 < N seq 1 + G × X N = seq 1 + H × X N
50 49 fveq2d S SubGrp G N X S ¬ N = 0 ¬ 0 < N inv g H seq 1 + G × X N = inv g H seq 1 + H × X N
51 47 50 eqtrd S SubGrp G N X S ¬ N = 0 ¬ 0 < N inv g G seq 1 + G × X N = inv g H seq 1 + H × X N
52 51 anassrs S SubGrp G N X S ¬ N = 0 ¬ 0 < N inv g G seq 1 + G × X N = inv g H seq 1 + H × X N
53 52 ifeq2da S SubGrp G N X S ¬ N = 0 if 0 < N seq 1 + H × X N inv g G seq 1 + G × X N = if 0 < N seq 1 + H × X N inv g H seq 1 + H × X N
54 14 53 eqtrd S SubGrp G N X S ¬ N = 0 if 0 < N seq 1 + G × X N inv g G seq 1 + G × X N = if 0 < N seq 1 + H × X N inv g H seq 1 + H × X N
55 54 ifeq2da S SubGrp G N X S if N = 0 0 H if 0 < N seq 1 + G × X N inv g G seq 1 + G × X N = if N = 0 0 H if 0 < N seq 1 + H × X N inv g H seq 1 + H × X N
56 7 55 eqtrd S SubGrp G N X S if N = 0 0 G if 0 < N seq 1 + G × X N inv g G seq 1 + G × X N = if N = 0 0 H if 0 < N seq 1 + H × X N inv g H seq 1 + H × X N
57 30 8 4 43 1 36 mulgval N X Base G N · ˙ X = if N = 0 0 G if 0 < N seq 1 + G × X N inv g G seq 1 + G × X N
58 15 34 57 syl2anc S SubGrp G N X S N · ˙ X = if N = 0 0 G if 0 < N seq 1 + G × X N inv g G seq 1 + G × X N
59 2 subgbas S SubGrp G S = Base H
60 59 3ad2ant1 S SubGrp G N X S S = Base H
61 33 60 eleqtrd S SubGrp G N X S X Base H
62 eqid Base H = Base H
63 eqid + H = + H
64 eqid 0 H = 0 H
65 eqid seq 1 + H × X = seq 1 + H × X
66 62 63 64 44 3 65 mulgval N X Base H N ˙ X = if N = 0 0 H if 0 < N seq 1 + H × X N inv g H seq 1 + H × X N
67 15 61 66 syl2anc S SubGrp G N X S N ˙ X = if N = 0 0 H if 0 < N seq 1 + H × X N inv g H seq 1 + H × X N
68 56 58 67 3eqtr4d S SubGrp G N X S N · ˙ X = N ˙ X