Step |
Hyp |
Ref |
Expression |
1 |
|
subgmulgcl.t |
|
2 |
|
subgmulg.h |
|
3 |
|
subgmulg.t |
|
4 |
|
eqid |
|
5 |
2 4
|
subg0 |
|
6 |
5
|
3ad2ant1 |
|
7 |
6
|
ifeq1d |
|
8 |
|
eqid |
|
9 |
2 8
|
ressplusg |
|
10 |
9
|
3ad2ant1 |
|
11 |
10
|
seqeq2d |
|
12 |
11
|
adantr |
|
13 |
12
|
fveq1d |
|
14 |
13
|
ifeq1d |
|
15 |
|
simp2 |
|
16 |
15
|
zred |
|
17 |
|
0re |
|
18 |
|
axlttri |
|
19 |
16 17 18
|
sylancl |
|
20 |
|
ioran |
|
21 |
19 20
|
bitrdi |
|
22 |
21
|
biimpar |
|
23 |
|
simpl1 |
|
24 |
15
|
adantr |
|
25 |
24
|
znegcld |
|
26 |
16
|
lt0neg1d |
|
27 |
26
|
biimpa |
|
28 |
|
elnnz |
|
29 |
25 27 28
|
sylanbrc |
|
30 |
|
eqid |
|
31 |
30
|
subgss |
|
32 |
31
|
3ad2ant1 |
|
33 |
|
simp3 |
|
34 |
32 33
|
sseldd |
|
35 |
34
|
adantr |
|
36 |
|
eqid |
|
37 |
30 8 1 36
|
mulgnn |
|
38 |
29 35 37
|
syl2anc |
|
39 |
33
|
adantr |
|
40 |
1
|
subgmulgcl |
|
41 |
23 25 39 40
|
syl3anc |
|
42 |
38 41
|
eqeltrrd |
|
43 |
|
eqid |
|
44 |
|
eqid |
|
45 |
2 43 44
|
subginv |
|
46 |
23 42 45
|
syl2anc |
|
47 |
22 46
|
syldan |
|
48 |
11
|
adantr |
|
49 |
48
|
fveq1d |
|
50 |
49
|
fveq2d |
|
51 |
47 50
|
eqtrd |
|
52 |
51
|
anassrs |
|
53 |
52
|
ifeq2da |
|
54 |
14 53
|
eqtrd |
|
55 |
54
|
ifeq2da |
|
56 |
7 55
|
eqtrd |
|
57 |
30 8 4 43 1 36
|
mulgval |
|
58 |
15 34 57
|
syl2anc |
|
59 |
2
|
subgbas |
|
60 |
59
|
3ad2ant1 |
|
61 |
33 60
|
eleqtrd |
|
62 |
|
eqid |
|
63 |
|
eqid |
|
64 |
|
eqid |
|
65 |
|
eqid |
|
66 |
62 63 64 44 3 65
|
mulgval |
|
67 |
15 61 66
|
syl2anc |
|
68 |
56 58 67
|
3eqtr4d |
|