Step |
Hyp |
Ref |
Expression |
1 |
|
subgngp.h |
|
2 |
1
|
subggrp |
|
3 |
2
|
adantl |
|
4 |
|
ngpms |
|
5 |
|
ressms |
|
6 |
4 5
|
sylan |
|
7 |
1 6
|
eqeltrid |
|
8 |
|
simplr |
|
9 |
|
simprl |
|
10 |
1
|
subgbas |
|
11 |
10
|
ad2antlr |
|
12 |
9 11
|
eleqtrrd |
|
13 |
|
simprr |
|
14 |
13 11
|
eleqtrrd |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
15 1 16
|
subgsub |
|
18 |
8 12 14 17
|
syl3anc |
|
19 |
18
|
fveq2d |
|
20 |
|
eqid |
|
21 |
1 20
|
ressds |
|
22 |
21
|
ad2antlr |
|
23 |
22
|
oveqd |
|
24 |
|
simpll |
|
25 |
|
eqid |
|
26 |
25
|
subgss |
|
27 |
26
|
ad2antlr |
|
28 |
27 12
|
sseldd |
|
29 |
27 14
|
sseldd |
|
30 |
|
eqid |
|
31 |
30 25 15 20
|
ngpds |
|
32 |
24 28 29 31
|
syl3anc |
|
33 |
23 32
|
eqtr3d |
|
34 |
|
eqid |
|
35 |
34 16
|
grpsubcl |
|
36 |
35
|
3expb |
|
37 |
3 36
|
sylan |
|
38 |
37 11
|
eleqtrrd |
|
39 |
|
eqid |
|
40 |
1 30 39
|
subgnm2 |
|
41 |
8 38 40
|
syl2anc |
|
42 |
19 33 41
|
3eqtr4d |
|
43 |
42
|
ralrimivva |
|
44 |
|
eqid |
|
45 |
39 16 44 34
|
isngp3 |
|
46 |
3 7 43 45
|
syl3anbrc |
|