Metamath Proof Explorer


Theorem subgnm2

Description: A substructure assigns the same values to the norms of elements of a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses subgngp.h H = G 𝑠 A
subgnm.n N = norm G
subgnm.m M = norm H
Assertion subgnm2 A SubGrp G X A M X = N X

Proof

Step Hyp Ref Expression
1 subgngp.h H = G 𝑠 A
2 subgnm.n N = norm G
3 subgnm.m M = norm H
4 1 2 3 subgnm A SubGrp G M = N A
5 4 fveq1d A SubGrp G M X = N A X
6 fvres X A N A X = N X
7 5 6 sylan9eq A SubGrp G X A M X = N X