Metamath Proof Explorer


Theorem subgntr

Description: A subgroup of a topological group with nonempty interior is open. Alternatively, dual to clssubg , the interior of a subgroup is either a subgroup, or empty. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypothesis subgntr.h J = TopOpen G
Assertion subgntr G TopGrp S SubGrp G A int J S S J

Proof

Step Hyp Ref Expression
1 subgntr.h J = TopOpen G
2 df-ima y Base G x - G A + G y int J S = ran y Base G x - G A + G y int J S
3 eqid Base G = Base G
4 1 3 tgptopon G TopGrp J TopOn Base G
5 4 3ad2ant1 G TopGrp S SubGrp G A int J S J TopOn Base G
6 5 adantr G TopGrp S SubGrp G A int J S x S J TopOn Base G
7 topontop J TopOn Base G J Top
8 5 7 syl G TopGrp S SubGrp G A int J S J Top
9 8 adantr G TopGrp S SubGrp G A int J S x S J Top
10 simpl2 G TopGrp S SubGrp G A int J S x S S SubGrp G
11 3 subgss S SubGrp G S Base G
12 10 11 syl G TopGrp S SubGrp G A int J S x S S Base G
13 toponuni J TopOn Base G Base G = J
14 6 13 syl G TopGrp S SubGrp G A int J S x S Base G = J
15 12 14 sseqtrd G TopGrp S SubGrp G A int J S x S S J
16 eqid J = J
17 16 ntropn J Top S J int J S J
18 9 15 17 syl2anc G TopGrp S SubGrp G A int J S x S int J S J
19 toponss J TopOn Base G int J S J int J S Base G
20 6 18 19 syl2anc G TopGrp S SubGrp G A int J S x S int J S Base G
21 20 resmptd G TopGrp S SubGrp G A int J S x S y Base G x - G A + G y int J S = y int J S x - G A + G y
22 21 rneqd G TopGrp S SubGrp G A int J S x S ran y Base G x - G A + G y int J S = ran y int J S x - G A + G y
23 2 22 syl5eq G TopGrp S SubGrp G A int J S x S y Base G x - G A + G y int J S = ran y int J S x - G A + G y
24 simpl1 G TopGrp S SubGrp G A int J S x S G TopGrp
25 simpr G TopGrp S SubGrp G A int J S x S x S
26 16 ntrss2 J Top S J int J S S
27 9 15 26 syl2anc G TopGrp S SubGrp G A int J S x S int J S S
28 simpl3 G TopGrp S SubGrp G A int J S x S A int J S
29 27 28 sseldd G TopGrp S SubGrp G A int J S x S A S
30 eqid - G = - G
31 30 subgsubcl S SubGrp G x S A S x - G A S
32 10 25 29 31 syl3anc G TopGrp S SubGrp G A int J S x S x - G A S
33 12 32 sseldd G TopGrp S SubGrp G A int J S x S x - G A Base G
34 eqid y Base G x - G A + G y = y Base G x - G A + G y
35 eqid + G = + G
36 34 3 35 1 tgplacthmeo G TopGrp x - G A Base G y Base G x - G A + G y J Homeo J
37 24 33 36 syl2anc G TopGrp S SubGrp G A int J S x S y Base G x - G A + G y J Homeo J
38 hmeoima y Base G x - G A + G y J Homeo J int J S J y Base G x - G A + G y int J S J
39 37 18 38 syl2anc G TopGrp S SubGrp G A int J S x S y Base G x - G A + G y int J S J
40 23 39 eqeltrrd G TopGrp S SubGrp G A int J S x S ran y int J S x - G A + G y J
41 tgpgrp G TopGrp G Grp
42 24 41 syl G TopGrp S SubGrp G A int J S x S G Grp
43 11 3ad2ant2 G TopGrp S SubGrp G A int J S S Base G
44 43 sselda G TopGrp S SubGrp G A int J S x S x Base G
45 20 28 sseldd G TopGrp S SubGrp G A int J S x S A Base G
46 3 35 30 grpnpcan G Grp x Base G A Base G x - G A + G A = x
47 42 44 45 46 syl3anc G TopGrp S SubGrp G A int J S x S x - G A + G A = x
48 ovex x - G A + G A V
49 eqid y int J S x - G A + G y = y int J S x - G A + G y
50 oveq2 y = A x - G A + G y = x - G A + G A
51 49 50 elrnmpt1s A int J S x - G A + G A V x - G A + G A ran y int J S x - G A + G y
52 28 48 51 sylancl G TopGrp S SubGrp G A int J S x S x - G A + G A ran y int J S x - G A + G y
53 47 52 eqeltrrd G TopGrp S SubGrp G A int J S x S x ran y int J S x - G A + G y
54 10 adantr G TopGrp S SubGrp G A int J S x S y int J S S SubGrp G
55 32 adantr G TopGrp S SubGrp G A int J S x S y int J S x - G A S
56 27 sselda G TopGrp S SubGrp G A int J S x S y int J S y S
57 35 subgcl S SubGrp G x - G A S y S x - G A + G y S
58 54 55 56 57 syl3anc G TopGrp S SubGrp G A int J S x S y int J S x - G A + G y S
59 58 fmpttd G TopGrp S SubGrp G A int J S x S y int J S x - G A + G y : int J S S
60 59 frnd G TopGrp S SubGrp G A int J S x S ran y int J S x - G A + G y S
61 eleq2 u = ran y int J S x - G A + G y x u x ran y int J S x - G A + G y
62 sseq1 u = ran y int J S x - G A + G y u S ran y int J S x - G A + G y S
63 61 62 anbi12d u = ran y int J S x - G A + G y x u u S x ran y int J S x - G A + G y ran y int J S x - G A + G y S
64 63 rspcev ran y int J S x - G A + G y J x ran y int J S x - G A + G y ran y int J S x - G A + G y S u J x u u S
65 40 53 60 64 syl12anc G TopGrp S SubGrp G A int J S x S u J x u u S
66 65 ralrimiva G TopGrp S SubGrp G A int J S x S u J x u u S
67 eltop2 J Top S J x S u J x u u S
68 8 67 syl G TopGrp S SubGrp G A int J S S J x S u J x u u S
69 66 68 mpbird G TopGrp S SubGrp G A int J S S J