Metamath Proof Explorer


Theorem subgpgp

Description: A subgroup of a p-group is a p-group. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Assertion subgpgp P pGrp G S SubGrp G P pGrp G 𝑠 S

Proof

Step Hyp Ref Expression
1 pgpprm P pGrp G P
2 1 adantr P pGrp G S SubGrp G P
3 eqid G 𝑠 S = G 𝑠 S
4 3 subggrp S SubGrp G G 𝑠 S Grp
5 4 adantl P pGrp G S SubGrp G G 𝑠 S Grp
6 eqid Base G = Base G
7 eqid od G = od G
8 6 7 ispgp P pGrp G P G Grp x Base G n 0 od G x = P n
9 8 simp3bi P pGrp G x Base G n 0 od G x = P n
10 9 adantr P pGrp G S SubGrp G x Base G n 0 od G x = P n
11 6 subgss S SubGrp G S Base G
12 11 adantl P pGrp G S SubGrp G S Base G
13 ssralv S Base G x Base G n 0 od G x = P n x S n 0 od G x = P n
14 12 13 syl P pGrp G S SubGrp G x Base G n 0 od G x = P n x S n 0 od G x = P n
15 eqid od G 𝑠 S = od G 𝑠 S
16 3 7 15 subgod S SubGrp G x S od G x = od G 𝑠 S x
17 16 adantll P pGrp G S SubGrp G x S od G x = od G 𝑠 S x
18 17 eqeq1d P pGrp G S SubGrp G x S od G x = P n od G 𝑠 S x = P n
19 18 rexbidv P pGrp G S SubGrp G x S n 0 od G x = P n n 0 od G 𝑠 S x = P n
20 19 ralbidva P pGrp G S SubGrp G x S n 0 od G x = P n x S n 0 od G 𝑠 S x = P n
21 14 20 sylibd P pGrp G S SubGrp G x Base G n 0 od G x = P n x S n 0 od G 𝑠 S x = P n
22 10 21 mpd P pGrp G S SubGrp G x S n 0 od G 𝑠 S x = P n
23 3 subgbas S SubGrp G S = Base G 𝑠 S
24 23 adantl P pGrp G S SubGrp G S = Base G 𝑠 S
25 24 raleqdv P pGrp G S SubGrp G x S n 0 od G 𝑠 S x = P n x Base G 𝑠 S n 0 od G 𝑠 S x = P n
26 22 25 mpbid P pGrp G S SubGrp G x Base G 𝑠 S n 0 od G 𝑠 S x = P n
27 eqid Base G 𝑠 S = Base G 𝑠 S
28 27 15 ispgp P pGrp G 𝑠 S P G 𝑠 S Grp x Base G 𝑠 S n 0 od G 𝑠 S x = P n
29 2 5 26 28 syl3anbrc P pGrp G S SubGrp G P pGrp G 𝑠 S