Metamath Proof Explorer


Theorem subgrfun

Description: The edge function of a subgraph of a graph whose edge function is actually a function is a function. (Contributed by AV, 20-Nov-2020)

Ref Expression
Assertion subgrfun Fun iEdg G S SubGraph G Fun iEdg S

Proof

Step Hyp Ref Expression
1 eqid Vtx S = Vtx S
2 eqid Vtx G = Vtx G
3 eqid iEdg S = iEdg S
4 eqid iEdg G = iEdg G
5 eqid Edg S = Edg S
6 1 2 3 4 5 subgrprop2 S SubGraph G Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S
7 funss iEdg S iEdg G Fun iEdg G Fun iEdg S
8 7 3ad2ant2 Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S Fun iEdg G Fun iEdg S
9 6 8 syl S SubGraph G Fun iEdg G Fun iEdg S
10 9 impcom Fun iEdg G S SubGraph G Fun iEdg S