Metamath Proof Explorer


Theorem subgrfun

Description: The edge function of a subgraph of a graph whose edge function is actually a function is a function. (Contributed by AV, 20-Nov-2020)

Ref Expression
Assertion subgrfun FuniEdgGSSubGraphGFuniEdgS

Proof

Step Hyp Ref Expression
1 eqid VtxS=VtxS
2 eqid VtxG=VtxG
3 eqid iEdgS=iEdgS
4 eqid iEdgG=iEdgG
5 eqid EdgS=EdgS
6 1 2 3 4 5 subgrprop2 SSubGraphGVtxSVtxGiEdgSiEdgGEdgS𝒫VtxS
7 funss iEdgSiEdgGFuniEdgGFuniEdgS
8 7 3ad2ant2 VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSFuniEdgGFuniEdgS
9 6 8 syl SSubGraphGFuniEdgGFuniEdgS
10 9 impcom FuniEdgGSSubGraphGFuniEdgS