Metamath Proof Explorer


Theorem subgrprop3

Description: The properties of a subgraph: If S is a subgraph of G , its vertices are also vertices of G , and its edges are also edges of G . (Contributed by AV, 19-Nov-2020)

Ref Expression
Hypotheses subgrprop3.v V = Vtx S
subgrprop3.a A = Vtx G
subgrprop3.e E = Edg S
subgrprop3.b B = Edg G
Assertion subgrprop3 S SubGraph G V A E B

Proof

Step Hyp Ref Expression
1 subgrprop3.v V = Vtx S
2 subgrprop3.a A = Vtx G
3 subgrprop3.e E = Edg S
4 subgrprop3.b B = Edg G
5 eqid iEdg S = iEdg S
6 eqid iEdg G = iEdg G
7 1 2 5 6 3 subgrprop2 S SubGraph G V A iEdg S iEdg G E 𝒫 V
8 3simpa V A iEdg S iEdg G E 𝒫 V V A iEdg S iEdg G
9 7 8 syl S SubGraph G V A iEdg S iEdg G
10 simprl S SubGraph G V A iEdg S iEdg G V A
11 rnss iEdg S iEdg G ran iEdg S ran iEdg G
12 11 ad2antll S SubGraph G V A iEdg S iEdg G ran iEdg S ran iEdg G
13 subgrv S SubGraph G S V G V
14 edgval Edg S = ran iEdg S
15 14 a1i S V G V Edg S = ran iEdg S
16 3 15 syl5eq S V G V E = ran iEdg S
17 edgval Edg G = ran iEdg G
18 17 a1i S V G V Edg G = ran iEdg G
19 4 18 syl5eq S V G V B = ran iEdg G
20 16 19 sseq12d S V G V E B ran iEdg S ran iEdg G
21 13 20 syl S SubGraph G E B ran iEdg S ran iEdg G
22 21 adantr S SubGraph G V A iEdg S iEdg G E B ran iEdg S ran iEdg G
23 12 22 mpbird S SubGraph G V A iEdg S iEdg G E B
24 10 23 jca S SubGraph G V A iEdg S iEdg G V A E B
25 9 24 mpdan S SubGraph G V A E B