Metamath Proof Explorer


Theorem subgruhgredgd

Description: An edge of a subgraph of a hypergraph is a nonempty subset of its vertices. (Contributed by AV, 17-Nov-2020) (Revised by AV, 21-Nov-2020)

Ref Expression
Hypotheses subgruhgredgd.v V = Vtx S
subgruhgredgd.i I = iEdg S
subgruhgredgd.g φ G UHGraph
subgruhgredgd.s φ S SubGraph G
subgruhgredgd.x φ X dom I
Assertion subgruhgredgd φ I X 𝒫 V

Proof

Step Hyp Ref Expression
1 subgruhgredgd.v V = Vtx S
2 subgruhgredgd.i I = iEdg S
3 subgruhgredgd.g φ G UHGraph
4 subgruhgredgd.s φ S SubGraph G
5 subgruhgredgd.x φ X dom I
6 eqid Vtx G = Vtx G
7 eqid iEdg G = iEdg G
8 eqid Edg S = Edg S
9 1 6 2 7 8 subgrprop2 S SubGraph G V Vtx G I iEdg G Edg S 𝒫 V
10 4 9 syl φ V Vtx G I iEdg G Edg S 𝒫 V
11 simpr3 φ V Vtx G I iEdg G Edg S 𝒫 V Edg S 𝒫 V
12 subgruhgrfun G UHGraph S SubGraph G Fun iEdg S
13 3 4 12 syl2anc φ Fun iEdg S
14 2 dmeqi dom I = dom iEdg S
15 5 14 eleqtrdi φ X dom iEdg S
16 13 15 jca φ Fun iEdg S X dom iEdg S
17 16 adantr φ V Vtx G I iEdg G Edg S 𝒫 V Fun iEdg S X dom iEdg S
18 2 fveq1i I X = iEdg S X
19 fvelrn Fun iEdg S X dom iEdg S iEdg S X ran iEdg S
20 18 19 eqeltrid Fun iEdg S X dom iEdg S I X ran iEdg S
21 17 20 syl φ V Vtx G I iEdg G Edg S 𝒫 V I X ran iEdg S
22 edgval Edg S = ran iEdg S
23 21 22 eleqtrrdi φ V Vtx G I iEdg G Edg S 𝒫 V I X Edg S
24 11 23 sseldd φ V Vtx G I iEdg G Edg S 𝒫 V I X 𝒫 V
25 7 uhgrfun G UHGraph Fun iEdg G
26 3 25 syl φ Fun iEdg G
27 26 adantr φ V Vtx G I iEdg G Edg S 𝒫 V Fun iEdg G
28 simpr2 φ V Vtx G I iEdg G Edg S 𝒫 V I iEdg G
29 5 adantr φ V Vtx G I iEdg G Edg S 𝒫 V X dom I
30 funssfv Fun iEdg G I iEdg G X dom I iEdg G X = I X
31 30 eqcomd Fun iEdg G I iEdg G X dom I I X = iEdg G X
32 27 28 29 31 syl3anc φ V Vtx G I iEdg G Edg S 𝒫 V I X = iEdg G X
33 3 adantr φ V Vtx G I iEdg G Edg S 𝒫 V G UHGraph
34 26 funfnd φ iEdg G Fn dom iEdg G
35 34 adantr φ V Vtx G I iEdg G Edg S 𝒫 V iEdg G Fn dom iEdg G
36 subgreldmiedg S SubGraph G X dom iEdg S X dom iEdg G
37 4 15 36 syl2anc φ X dom iEdg G
38 37 adantr φ V Vtx G I iEdg G Edg S 𝒫 V X dom iEdg G
39 7 uhgrn0 G UHGraph iEdg G Fn dom iEdg G X dom iEdg G iEdg G X
40 33 35 38 39 syl3anc φ V Vtx G I iEdg G Edg S 𝒫 V iEdg G X
41 32 40 eqnetrd φ V Vtx G I iEdg G Edg S 𝒫 V I X
42 eldifsn I X 𝒫 V I X 𝒫 V I X
43 24 41 42 sylanbrc φ V Vtx G I iEdg G Edg S 𝒫 V I X 𝒫 V
44 10 43 mpdan φ I X 𝒫 V