Step |
Hyp |
Ref |
Expression |
1 |
|
subgruhgredgd.v |
|
2 |
|
subgruhgredgd.i |
|
3 |
|
subgruhgredgd.g |
|
4 |
|
subgruhgredgd.s |
|
5 |
|
subgruhgredgd.x |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
1 6 2 7 8
|
subgrprop2 |
|
10 |
4 9
|
syl |
|
11 |
|
simpr3 |
|
12 |
|
subgruhgrfun |
|
13 |
3 4 12
|
syl2anc |
|
14 |
2
|
dmeqi |
|
15 |
5 14
|
eleqtrdi |
|
16 |
13 15
|
jca |
|
17 |
16
|
adantr |
|
18 |
2
|
fveq1i |
|
19 |
|
fvelrn |
|
20 |
18 19
|
eqeltrid |
|
21 |
17 20
|
syl |
|
22 |
|
edgval |
|
23 |
21 22
|
eleqtrrdi |
|
24 |
11 23
|
sseldd |
|
25 |
7
|
uhgrfun |
|
26 |
3 25
|
syl |
|
27 |
26
|
adantr |
|
28 |
|
simpr2 |
|
29 |
5
|
adantr |
|
30 |
|
funssfv |
|
31 |
30
|
eqcomd |
|
32 |
27 28 29 31
|
syl3anc |
|
33 |
3
|
adantr |
|
34 |
26
|
funfnd |
|
35 |
34
|
adantr |
|
36 |
|
subgreldmiedg |
|
37 |
4 15 36
|
syl2anc |
|
38 |
37
|
adantr |
|
39 |
7
|
uhgrn0 |
|
40 |
33 35 38 39
|
syl3anc |
|
41 |
32 40
|
eqnetrd |
|
42 |
|
eldifsn |
|
43 |
24 41 42
|
sylanbrc |
|
44 |
10 43
|
mpdan |
|