Metamath Proof Explorer


Theorem subgsub

Description: The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses subgsubcl.p - ˙ = - G
subgsub.h H = G 𝑠 S
subgsub.n N = - H
Assertion subgsub S SubGrp G X S Y S X - ˙ Y = X N Y

Proof

Step Hyp Ref Expression
1 subgsubcl.p - ˙ = - G
2 subgsub.h H = G 𝑠 S
3 subgsub.n N = - H
4 eqid + G = + G
5 2 4 ressplusg S SubGrp G + G = + H
6 5 3ad2ant1 S SubGrp G X S Y S + G = + H
7 eqidd S SubGrp G X S Y S X = X
8 eqid inv g G = inv g G
9 eqid inv g H = inv g H
10 2 8 9 subginv S SubGrp G Y S inv g G Y = inv g H Y
11 10 3adant2 S SubGrp G X S Y S inv g G Y = inv g H Y
12 6 7 11 oveq123d S SubGrp G X S Y S X + G inv g G Y = X + H inv g H Y
13 eqid Base G = Base G
14 13 subgss S SubGrp G S Base G
15 14 3ad2ant1 S SubGrp G X S Y S S Base G
16 simp2 S SubGrp G X S Y S X S
17 15 16 sseldd S SubGrp G X S Y S X Base G
18 simp3 S SubGrp G X S Y S Y S
19 15 18 sseldd S SubGrp G X S Y S Y Base G
20 13 4 8 1 grpsubval X Base G Y Base G X - ˙ Y = X + G inv g G Y
21 17 19 20 syl2anc S SubGrp G X S Y S X - ˙ Y = X + G inv g G Y
22 2 subgbas S SubGrp G S = Base H
23 22 3ad2ant1 S SubGrp G X S Y S S = Base H
24 16 23 eleqtrd S SubGrp G X S Y S X Base H
25 18 23 eleqtrd S SubGrp G X S Y S Y Base H
26 eqid Base H = Base H
27 eqid + H = + H
28 26 27 9 3 grpsubval X Base H Y Base H X N Y = X + H inv g H Y
29 24 25 28 syl2anc S SubGrp G X S Y S X N Y = X + H inv g H Y
30 12 21 29 3eqtr4d S SubGrp G X S Y S X - ˙ Y = X N Y