| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgsubcl.p |
|
| 2 |
|
subgsub.h |
|
| 3 |
|
subgsub.n |
|
| 4 |
|
eqid |
|
| 5 |
2 4
|
ressplusg |
|
| 6 |
5
|
3ad2ant1 |
|
| 7 |
|
eqidd |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
2 8 9
|
subginv |
|
| 11 |
10
|
3adant2 |
|
| 12 |
6 7 11
|
oveq123d |
|
| 13 |
|
eqid |
|
| 14 |
13
|
subgss |
|
| 15 |
14
|
3ad2ant1 |
|
| 16 |
|
simp2 |
|
| 17 |
15 16
|
sseldd |
|
| 18 |
|
simp3 |
|
| 19 |
15 18
|
sseldd |
|
| 20 |
13 4 8 1
|
grpsubval |
|
| 21 |
17 19 20
|
syl2anc |
|
| 22 |
2
|
subgbas |
|
| 23 |
22
|
3ad2ant1 |
|
| 24 |
16 23
|
eleqtrd |
|
| 25 |
18 23
|
eleqtrd |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
26 27 9 3
|
grpsubval |
|
| 29 |
24 25 28
|
syl2anc |
|
| 30 |
12 21 29
|
3eqtr4d |
|