Description: The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subgsubcl.p | |
|
subgsub.h | |
||
subgsub.n | |
||
Assertion | subgsub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgsubcl.p | |
|
2 | subgsub.h | |
|
3 | subgsub.n | |
|
4 | eqid | |
|
5 | 2 4 | ressplusg | |
6 | 5 | 3ad2ant1 | |
7 | eqidd | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 2 8 9 | subginv | |
11 | 10 | 3adant2 | |
12 | 6 7 11 | oveq123d | |
13 | eqid | |
|
14 | 13 | subgss | |
15 | 14 | 3ad2ant1 | |
16 | simp2 | |
|
17 | 15 16 | sseldd | |
18 | simp3 | |
|
19 | 15 18 | sseldd | |
20 | 13 4 8 1 | grpsubval | |
21 | 17 19 20 | syl2anc | |
22 | 2 | subgbas | |
23 | 22 | 3ad2ant1 | |
24 | 16 23 | eleqtrd | |
25 | 18 23 | eleqtrd | |
26 | eqid | |
|
27 | eqid | |
|
28 | 26 27 9 3 | grpsubval | |
29 | 24 25 28 | syl2anc | |
30 | 12 21 29 | 3eqtr4d | |