Metamath Proof Explorer


Theorem subgsub

Description: The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses subgsubcl.p -˙=-G
subgsub.h H=G𝑠S
subgsub.n N=-H
Assertion subgsub SSubGrpGXSYSX-˙Y=XNY

Proof

Step Hyp Ref Expression
1 subgsubcl.p -˙=-G
2 subgsub.h H=G𝑠S
3 subgsub.n N=-H
4 eqid +G=+G
5 2 4 ressplusg SSubGrpG+G=+H
6 5 3ad2ant1 SSubGrpGXSYS+G=+H
7 eqidd SSubGrpGXSYSX=X
8 eqid invgG=invgG
9 eqid invgH=invgH
10 2 8 9 subginv SSubGrpGYSinvgGY=invgHY
11 10 3adant2 SSubGrpGXSYSinvgGY=invgHY
12 6 7 11 oveq123d SSubGrpGXSYSX+GinvgGY=X+HinvgHY
13 eqid BaseG=BaseG
14 13 subgss SSubGrpGSBaseG
15 14 3ad2ant1 SSubGrpGXSYSSBaseG
16 simp2 SSubGrpGXSYSXS
17 15 16 sseldd SSubGrpGXSYSXBaseG
18 simp3 SSubGrpGXSYSYS
19 15 18 sseldd SSubGrpGXSYSYBaseG
20 13 4 8 1 grpsubval XBaseGYBaseGX-˙Y=X+GinvgGY
21 17 19 20 syl2anc SSubGrpGXSYSX-˙Y=X+GinvgGY
22 2 subgbas SSubGrpGS=BaseH
23 22 3ad2ant1 SSubGrpGXSYSS=BaseH
24 16 23 eleqtrd SSubGrpGXSYSXBaseH
25 18 23 eleqtrd SSubGrpGXSYSYBaseH
26 eqid BaseH=BaseH
27 eqid +H=+H
28 26 27 9 3 grpsubval XBaseHYBaseHXNY=X+HinvgHY
29 24 25 28 syl2anc SSubGrpGXSYSXNY=X+HinvgHY
30 12 21 29 3eqtr4d SSubGrpGXSYSX-˙Y=XNY