Metamath Proof Explorer


Theorem subgsubcl

Description: A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypothesis subgsubcl.p - ˙ = - G
Assertion subgsubcl S SubGrp G X S Y S X - ˙ Y S

Proof

Step Hyp Ref Expression
1 subgsubcl.p - ˙ = - G
2 eqid Base G = Base G
3 2 subgss S SubGrp G S Base G
4 3 3ad2ant1 S SubGrp G X S Y S S Base G
5 simp2 S SubGrp G X S Y S X S
6 4 5 sseldd S SubGrp G X S Y S X Base G
7 simp3 S SubGrp G X S Y S Y S
8 4 7 sseldd S SubGrp G X S Y S Y Base G
9 eqid + G = + G
10 eqid inv g G = inv g G
11 2 9 10 1 grpsubval X Base G Y Base G X - ˙ Y = X + G inv g G Y
12 6 8 11 syl2anc S SubGrp G X S Y S X - ˙ Y = X + G inv g G Y
13 10 subginvcl S SubGrp G Y S inv g G Y S
14 13 3adant2 S SubGrp G X S Y S inv g G Y S
15 9 subgcl S SubGrp G X S inv g G Y S X + G inv g G Y S
16 14 15 syld3an3 S SubGrp G X S Y S X + G inv g G Y S
17 12 16 eqeltrd S SubGrp G X S Y S X - ˙ Y S