Metamath Proof Explorer


Theorem subgtgp

Description: A subgroup of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis subgtgp.h H = G 𝑠 S
Assertion subgtgp G TopGrp S SubGrp G H TopGrp

Proof

Step Hyp Ref Expression
1 subgtgp.h H = G 𝑠 S
2 1 subggrp S SubGrp G H Grp
3 2 adantl G TopGrp S SubGrp G H Grp
4 tgptmd G TopGrp G TopMnd
5 subgsubm S SubGrp G S SubMnd G
6 1 submtmd G TopMnd S SubMnd G H TopMnd
7 4 5 6 syl2an G TopGrp S SubGrp G H TopMnd
8 1 subgbas S SubGrp G S = Base H
9 8 adantl G TopGrp S SubGrp G S = Base H
10 9 mpteq1d G TopGrp S SubGrp G x S inv g H x = x Base H inv g H x
11 eqid inv g G = inv g G
12 eqid inv g H = inv g H
13 1 11 12 subginv S SubGrp G x S inv g G x = inv g H x
14 13 adantll G TopGrp S SubGrp G x S inv g G x = inv g H x
15 14 mpteq2dva G TopGrp S SubGrp G x S inv g G x = x S inv g H x
16 eqid Base H = Base H
17 16 12 grpinvf H Grp inv g H : Base H Base H
18 3 17 syl G TopGrp S SubGrp G inv g H : Base H Base H
19 18 feqmptd G TopGrp S SubGrp G inv g H = x Base H inv g H x
20 10 15 19 3eqtr4rd G TopGrp S SubGrp G inv g H = x S inv g G x
21 eqid TopOpen G 𝑡 S = TopOpen G 𝑡 S
22 eqid TopOpen G = TopOpen G
23 eqid Base G = Base G
24 22 23 tgptopon G TopGrp TopOpen G TopOn Base G
25 24 adantr G TopGrp S SubGrp G TopOpen G TopOn Base G
26 23 subgss S SubGrp G S Base G
27 26 adantl G TopGrp S SubGrp G S Base G
28 tgpgrp G TopGrp G Grp
29 28 adantr G TopGrp S SubGrp G G Grp
30 23 11 grpinvf G Grp inv g G : Base G Base G
31 29 30 syl G TopGrp S SubGrp G inv g G : Base G Base G
32 31 feqmptd G TopGrp S SubGrp G inv g G = x Base G inv g G x
33 22 11 tgpinv G TopGrp inv g G TopOpen G Cn TopOpen G
34 33 adantr G TopGrp S SubGrp G inv g G TopOpen G Cn TopOpen G
35 32 34 eqeltrrd G TopGrp S SubGrp G x Base G inv g G x TopOpen G Cn TopOpen G
36 21 25 27 35 cnmpt1res G TopGrp S SubGrp G x S inv g G x TopOpen G 𝑡 S Cn TopOpen G
37 20 36 eqeltrd G TopGrp S SubGrp G inv g H TopOpen G 𝑡 S Cn TopOpen G
38 18 frnd G TopGrp S SubGrp G ran inv g H Base H
39 38 9 sseqtrrd G TopGrp S SubGrp G ran inv g H S
40 cnrest2 TopOpen G TopOn Base G ran inv g H S S Base G inv g H TopOpen G 𝑡 S Cn TopOpen G inv g H TopOpen G 𝑡 S Cn TopOpen G 𝑡 S
41 25 39 27 40 syl3anc G TopGrp S SubGrp G inv g H TopOpen G 𝑡 S Cn TopOpen G inv g H TopOpen G 𝑡 S Cn TopOpen G 𝑡 S
42 37 41 mpbid G TopGrp S SubGrp G inv g H TopOpen G 𝑡 S Cn TopOpen G 𝑡 S
43 1 22 resstopn TopOpen G 𝑡 S = TopOpen H
44 43 12 istgp H TopGrp H Grp H TopMnd inv g H TopOpen G 𝑡 S Cn TopOpen G 𝑡 S
45 3 7 42 44 syl3anbrc G TopGrp S SubGrp G H TopGrp