Metamath Proof Explorer


Theorem subhalfhalf

Description: Subtracting the half of a number from the number yields the half of the number. (Contributed by AV, 28-Jun-2021)

Ref Expression
Assertion subhalfhalf A A A 2 = A 2

Proof

Step Hyp Ref Expression
1 id A A
2 2cnd A 2
3 2ne0 2 0
4 3 a1i A 2 0
5 1 2 4 divcan1d A A 2 2 = A
6 5 eqcomd A A = A 2 2
7 6 oveq1d A A A 2 = A 2 2 A 2
8 halfcl A A 2
9 8 2 mulcomd A A 2 2 = 2 A 2
10 9 oveq1d A A 2 2 A 2 = 2 A 2 A 2
11 2 8 mulsubfacd A 2 A 2 A 2 = 2 1 A 2
12 2m1e1 2 1 = 1
13 12 a1i A 2 1 = 1
14 13 oveq1d A 2 1 A 2 = 1 A 2
15 8 mulid2d A 1 A 2 = A 2
16 11 14 15 3eqtrd A 2 A 2 A 2 = A 2
17 7 10 16 3eqtrd A A A 2 = A 2