Metamath Proof Explorer


Theorem suble

Description: Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005)

Ref Expression
Assertion suble A B C A B C A C B

Proof

Step Hyp Ref Expression
1 lesubadd A B C A B C A C + B
2 lesubadd2 A C B A C B A C + B
3 2 3com23 A B C A C B A C + B
4 1 3 bitr4d A B C A B C A C B