Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
suble
Next ⟩
lesub
Metamath Proof Explorer
Ascii
Unicode
Theorem
suble
Description:
Swap subtrahends in an inequality.
(Contributed by
NM
, 29-Sep-2005)
Ref
Expression
Assertion
suble
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
−
B
≤
C
↔
A
−
C
≤
B
Proof
Step
Hyp
Ref
Expression
1
lesubadd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
−
B
≤
C
↔
A
≤
C
+
B
2
lesubadd2
⊢
A
∈
ℝ
∧
C
∈
ℝ
∧
B
∈
ℝ
→
A
−
C
≤
B
↔
A
≤
C
+
B
3
2
3com23
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
−
C
≤
B
↔
A
≤
C
+
B
4
1
3
bitr4d
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
−
B
≤
C
↔
A
−
C
≤
B