Metamath Proof Explorer


Theorem suble0

Description: Nonpositive subtraction. (Contributed by NM, 20-Mar-2008) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion suble0 A B A B 0 A B

Proof

Step Hyp Ref Expression
1 0re 0
2 suble A B 0 A B 0 A 0 B
3 1 2 mp3an3 A B A B 0 A 0 B
4 simpl A B A
5 4 recnd A B A
6 5 subid1d A B A 0 = A
7 6 breq1d A B A 0 B A B
8 3 7 bitrd A B A B 0 A B