Metamath Proof Explorer


Theorem sublevolico

Description: The Lebesgue measure of a left-closed, right-open interval is greater than or equal to the difference of the two bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses sublevolico.a φ A
sublevolico.b φ B
Assertion sublevolico φ B A vol A B

Proof

Step Hyp Ref Expression
1 sublevolico.a φ A
2 sublevolico.b φ B
3 2 1 resubcld φ B A
4 eqidd φ B A = B A
5 3 4 eqled φ B A B A
6 5 adantr φ A < B B A B A
7 volico A B vol A B = if A < B B A 0
8 1 2 7 syl2anc φ vol A B = if A < B B A 0
9 8 adantr φ A < B vol A B = if A < B B A 0
10 iftrue A < B if A < B B A 0 = B A
11 10 adantl φ A < B if A < B B A 0 = B A
12 9 11 eqtr2d φ A < B B A = vol A B
13 6 12 breqtrd φ A < B B A vol A B
14 simpr φ ¬ A < B ¬ A < B
15 2 1 lenltd φ B A ¬ A < B
16 15 adantr φ ¬ A < B B A ¬ A < B
17 14 16 mpbird φ ¬ A < B B A
18 2 adantr φ ¬ A < B B
19 1 adantr φ ¬ A < B A
20 18 19 suble0d φ ¬ A < B B A 0 B A
21 17 20 mpbird φ ¬ A < B B A 0
22 8 adantr φ ¬ A < B vol A B = if A < B B A 0
23 iffalse ¬ A < B if A < B B A 0 = 0
24 23 adantl φ ¬ A < B if A < B B A 0 = 0
25 22 24 eqtr2d φ ¬ A < B 0 = vol A B
26 21 25 breqtrd φ ¬ A < B B A vol A B
27 13 26 pm2.61dan φ B A vol A B