Metamath Proof Explorer


Theorem sublimc

Description: Subtraction of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses sublimc.f F = x A B
sublimc.2 G = x A C
sublimc.3 H = x A B C
sublimc.4 φ x A B
sublimc.5 φ x A C
sublimc.6 φ E F lim D
sublimc.7 φ I G lim D
Assertion sublimc φ E I H lim D

Proof

Step Hyp Ref Expression
1 sublimc.f F = x A B
2 sublimc.2 G = x A C
3 sublimc.3 H = x A B C
4 sublimc.4 φ x A B
5 sublimc.5 φ x A C
6 sublimc.6 φ E F lim D
7 sublimc.7 φ I G lim D
8 eqid x A C = x A C
9 eqid x A B + C = x A B + C
10 5 negcld φ x A C
11 2 8 5 7 neglimc φ I x A C lim D
12 1 8 9 4 10 6 11 addlimc φ E + -I x A B + C lim D
13 limccl F lim D
14 13 6 sselid φ E
15 limccl G lim D
16 15 7 sselid φ I
17 14 16 negsubd φ E + -I = E I
18 17 eqcomd φ E I = E + -I
19 4 5 negsubd φ x A B + C = B C
20 19 eqcomd φ x A B C = B + C
21 20 mpteq2dva φ x A B C = x A B + C
22 3 21 syl5eq φ H = x A B + C
23 22 oveq1d φ H lim D = x A B + C lim D
24 12 18 23 3eltr4d φ E I H lim D