Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Monoid homomorphisms and submonoids
subm0
Next ⟩
subsubm
Metamath Proof Explorer
Ascii
Unicode
Theorem
subm0
Description:
Submonoids have the same identity.
(Contributed by
Mario Carneiro
, 7-Mar-2015)
Ref
Expression
Hypotheses
submmnd.h
⊢
H
=
M
↾
𝑠
S
subm0.z
⊢
0
˙
=
0
M
Assertion
subm0
⊢
S
∈
SubMnd
⁡
M
→
0
˙
=
0
H
Proof
Step
Hyp
Ref
Expression
1
submmnd.h
⊢
H
=
M
↾
𝑠
S
2
subm0.z
⊢
0
˙
=
0
M
3
submrcl
⊢
S
∈
SubMnd
⁡
M
→
M
∈
Mnd
4
1
submmnd
⊢
S
∈
SubMnd
⁡
M
→
H
∈
Mnd
5
eqid
⊢
Base
M
=
Base
M
6
5
submss
⊢
S
∈
SubMnd
⁡
M
→
S
⊆
Base
M
7
2
subm0cl
⊢
S
∈
SubMnd
⁡
M
→
0
˙
∈
S
8
5
2
1
submnd0
⊢
M
∈
Mnd
∧
H
∈
Mnd
∧
S
⊆
Base
M
∧
0
˙
∈
S
→
0
˙
=
0
H
9
3
4
6
7
8
syl22anc
⊢
S
∈
SubMnd
⁡
M
→
0
˙
=
0
H