Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Monoid homomorphisms and submonoids
subm0cl
Next ⟩
submcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
subm0cl
Description:
Submonoids contain zero.
(Contributed by
Mario Carneiro
, 7-Mar-2015)
Ref
Expression
Hypothesis
subm0cl.z
⊢
0
˙
=
0
M
Assertion
subm0cl
⊢
S
∈
SubMnd
⁡
M
→
0
˙
∈
S
Proof
Step
Hyp
Ref
Expression
1
subm0cl.z
⊢
0
˙
=
0
M
2
submrcl
⊢
S
∈
SubMnd
⁡
M
→
M
∈
Mnd
3
eqid
⊢
Base
M
=
Base
M
4
eqid
⊢
M
↾
𝑠
S
=
M
↾
𝑠
S
5
3
1
4
issubm2
⊢
M
∈
Mnd
→
S
∈
SubMnd
⁡
M
↔
S
⊆
Base
M
∧
0
˙
∈
S
∧
M
↾
𝑠
S
∈
Mnd
6
2
5
syl
⊢
S
∈
SubMnd
⁡
M
→
S
∈
SubMnd
⁡
M
↔
S
⊆
Base
M
∧
0
˙
∈
S
∧
M
↾
𝑠
S
∈
Mnd
7
6
ibi
⊢
S
∈
SubMnd
⁡
M
→
S
⊆
Base
M
∧
0
˙
∈
S
∧
M
↾
𝑠
S
∈
Mnd
8
7
simp2d
⊢
S
∈
SubMnd
⁡
M
→
0
˙
∈
S