Metamath Proof Explorer


Theorem subm0cl

Description: Submonoids contain zero. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypothesis subm0cl.z 0 ˙ = 0 M
Assertion subm0cl S SubMnd M 0 ˙ S

Proof

Step Hyp Ref Expression
1 subm0cl.z 0 ˙ = 0 M
2 submrcl S SubMnd M M Mnd
3 eqid Base M = Base M
4 eqid M 𝑠 S = M 𝑠 S
5 3 1 4 issubm2 M Mnd S SubMnd M S Base M 0 ˙ S M 𝑠 S Mnd
6 2 5 syl S SubMnd M S SubMnd M S Base M 0 ˙ S M 𝑠 S Mnd
7 6 ibi S SubMnd M S Base M 0 ˙ S M 𝑠 S Mnd
8 7 simp2d S SubMnd M 0 ˙ S