Metamath Proof Explorer


Theorem submaeval

Description: An entry of a submatrix of a square matrix. (Contributed by AV, 28-Dec-2018)

Ref Expression
Hypotheses submafval.a A = N Mat R
submafval.q Q = N subMat R
submafval.b B = Base A
Assertion submaeval M B K N L N I N K J N L I K Q M L J = I M J

Proof

Step Hyp Ref Expression
1 submafval.a A = N Mat R
2 submafval.q Q = N subMat R
3 submafval.b B = Base A
4 1 2 3 submaval M B K N L N K Q M L = i N K , j N L i M j
5 4 3expb M B K N L N K Q M L = i N K , j N L i M j
6 5 3adant3 M B K N L N I N K J N L K Q M L = i N K , j N L i M j
7 simp3l M B K N L N I N K J N L I N K
8 simpl3r M B K N L N I N K J N L i = I J N L
9 ovexd M B K N L N I N K J N L i = I j = J i M j V
10 oveq12 i = I j = J i M j = I M J
11 10 adantl M B K N L N I N K J N L i = I j = J i M j = I M J
12 7 8 9 11 ovmpodv2 M B K N L N I N K J N L K Q M L = i N K , j N L i M j I K Q M L J = I M J
13 6 12 mpd M B K N L N I N K J N L I K Q M L J = I M J