Database
BASIC LINEAR ALGEBRA
Matrices
Submatrices
submaeval
Next ⟩
1marepvsma1
Metamath Proof Explorer
Ascii
Unicode
Theorem
submaeval
Description:
An entry of a submatrix of a square matrix.
(Contributed by
AV
, 28-Dec-2018)
Ref
Expression
Hypotheses
submafval.a
⊢
A
=
N
Mat
R
submafval.q
⊢
Q
=
N
subMat
R
submafval.b
⊢
B
=
Base
A
Assertion
submaeval
⊢
M
∈
B
∧
K
∈
N
∧
L
∈
N
∧
I
∈
N
∖
K
∧
J
∈
N
∖
L
→
I
K
Q
⁡
M
L
J
=
I
M
J
Proof
Step
Hyp
Ref
Expression
1
submafval.a
⊢
A
=
N
Mat
R
2
submafval.q
⊢
Q
=
N
subMat
R
3
submafval.b
⊢
B
=
Base
A
4
1
2
3
submaval
⊢
M
∈
B
∧
K
∈
N
∧
L
∈
N
→
K
Q
⁡
M
L
=
i
∈
N
∖
K
,
j
∈
N
∖
L
⟼
i
M
j
5
4
3expb
⊢
M
∈
B
∧
K
∈
N
∧
L
∈
N
→
K
Q
⁡
M
L
=
i
∈
N
∖
K
,
j
∈
N
∖
L
⟼
i
M
j
6
5
3adant3
⊢
M
∈
B
∧
K
∈
N
∧
L
∈
N
∧
I
∈
N
∖
K
∧
J
∈
N
∖
L
→
K
Q
⁡
M
L
=
i
∈
N
∖
K
,
j
∈
N
∖
L
⟼
i
M
j
7
simp3l
⊢
M
∈
B
∧
K
∈
N
∧
L
∈
N
∧
I
∈
N
∖
K
∧
J
∈
N
∖
L
→
I
∈
N
∖
K
8
simpl3r
⊢
M
∈
B
∧
K
∈
N
∧
L
∈
N
∧
I
∈
N
∖
K
∧
J
∈
N
∖
L
∧
i
=
I
→
J
∈
N
∖
L
9
ovexd
⊢
M
∈
B
∧
K
∈
N
∧
L
∈
N
∧
I
∈
N
∖
K
∧
J
∈
N
∖
L
∧
i
=
I
∧
j
=
J
→
i
M
j
∈
V
10
oveq12
⊢
i
=
I
∧
j
=
J
→
i
M
j
=
I
M
J
11
10
adantl
⊢
M
∈
B
∧
K
∈
N
∧
L
∈
N
∧
I
∈
N
∖
K
∧
J
∈
N
∖
L
∧
i
=
I
∧
j
=
J
→
i
M
j
=
I
M
J
12
7
8
9
11
ovmpodv2
⊢
M
∈
B
∧
K
∈
N
∧
L
∈
N
∧
I
∈
N
∖
K
∧
J
∈
N
∖
L
→
K
Q
⁡
M
L
=
i
∈
N
∖
K
,
j
∈
N
∖
L
⟼
i
M
j
→
I
K
Q
⁡
M
L
J
=
I
M
J
13
6
12
mpd
⊢
M
∈
B
∧
K
∈
N
∧
L
∈
N
∧
I
∈
N
∖
K
∧
J
∈
N
∖
L
→
I
K
Q
⁡
M
L
J
=
I
M
J