Metamath Proof Explorer


Theorem submaval0

Description: Second substitution for a submatrix. (Contributed by AV, 28-Dec-2018)

Ref Expression
Hypotheses submafval.a A = N Mat R
submafval.q Q = N subMat R
submafval.b B = Base A
Assertion submaval0 M B Q M = k N , l N i N k , j N l i M j

Proof

Step Hyp Ref Expression
1 submafval.a A = N Mat R
2 submafval.q Q = N subMat R
3 submafval.b B = Base A
4 1 3 matrcl M B N Fin R V
5 4 simpld M B N Fin
6 mpoexga N Fin N Fin k N , l N i N k , j N l i M j V
7 5 5 6 syl2anc M B k N , l N i N k , j N l i M j V
8 oveq m = M i m j = i M j
9 8 mpoeq3dv m = M i N k , j N l i m j = i N k , j N l i M j
10 9 mpoeq3dv m = M k N , l N i N k , j N l i m j = k N , l N i N k , j N l i M j
11 1 2 3 submafval Q = m B k N , l N i N k , j N l i m j
12 10 11 fvmptg M B k N , l N i N k , j N l i M j V Q M = k N , l N i N k , j N l i M j
13 7 12 mpdan M B Q M = k N , l N i N k , j N l i M j