Database
BASIC LINEAR ALGEBRA
Matrices
Submatrices
submaval0
Next ⟩
submaval
Metamath Proof Explorer
Ascii
Unicode
Theorem
submaval0
Description:
Second substitution for a submatrix.
(Contributed by
AV
, 28-Dec-2018)
Ref
Expression
Hypotheses
submafval.a
⊢
A
=
N
Mat
R
submafval.q
⊢
Q
=
N
subMat
R
submafval.b
⊢
B
=
Base
A
Assertion
submaval0
⊢
M
∈
B
→
Q
⁡
M
=
k
∈
N
,
l
∈
N
⟼
i
∈
N
∖
k
,
j
∈
N
∖
l
⟼
i
M
j
Proof
Step
Hyp
Ref
Expression
1
submafval.a
⊢
A
=
N
Mat
R
2
submafval.q
⊢
Q
=
N
subMat
R
3
submafval.b
⊢
B
=
Base
A
4
1
3
matrcl
⊢
M
∈
B
→
N
∈
Fin
∧
R
∈
V
5
4
simpld
⊢
M
∈
B
→
N
∈
Fin
6
mpoexga
⊢
N
∈
Fin
∧
N
∈
Fin
→
k
∈
N
,
l
∈
N
⟼
i
∈
N
∖
k
,
j
∈
N
∖
l
⟼
i
M
j
∈
V
7
5
5
6
syl2anc
⊢
M
∈
B
→
k
∈
N
,
l
∈
N
⟼
i
∈
N
∖
k
,
j
∈
N
∖
l
⟼
i
M
j
∈
V
8
oveq
⊢
m
=
M
→
i
m
j
=
i
M
j
9
8
mpoeq3dv
⊢
m
=
M
→
i
∈
N
∖
k
,
j
∈
N
∖
l
⟼
i
m
j
=
i
∈
N
∖
k
,
j
∈
N
∖
l
⟼
i
M
j
10
9
mpoeq3dv
⊢
m
=
M
→
k
∈
N
,
l
∈
N
⟼
i
∈
N
∖
k
,
j
∈
N
∖
l
⟼
i
m
j
=
k
∈
N
,
l
∈
N
⟼
i
∈
N
∖
k
,
j
∈
N
∖
l
⟼
i
M
j
11
1
2
3
submafval
⊢
Q
=
m
∈
B
⟼
k
∈
N
,
l
∈
N
⟼
i
∈
N
∖
k
,
j
∈
N
∖
l
⟼
i
m
j
12
10
11
fvmptg
⊢
M
∈
B
∧
k
∈
N
,
l
∈
N
⟼
i
∈
N
∖
k
,
j
∈
N
∖
l
⟼
i
M
j
∈
V
→
Q
⁡
M
=
k
∈
N
,
l
∈
N
⟼
i
∈
N
∖
k
,
j
∈
N
∖
l
⟼
i
M
j
13
7
12
mpdan
⊢
M
∈
B
→
Q
⁡
M
=
k
∈
N
,
l
∈
N
⟼
i
∈
N
∖
k
,
j
∈
N
∖
l
⟼
i
M
j