Metamath Proof Explorer


Theorem submcl

Description: Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypothesis submcl.p + ˙ = + M
Assertion submcl S SubMnd M X S Y S X + ˙ Y S

Proof

Step Hyp Ref Expression
1 submcl.p + ˙ = + M
2 submrcl S SubMnd M M Mnd
3 eqid Base M = Base M
4 eqid 0 M = 0 M
5 3 4 1 issubm M Mnd S SubMnd M S Base M 0 M S x S y S x + ˙ y S
6 2 5 syl S SubMnd M S SubMnd M S Base M 0 M S x S y S x + ˙ y S
7 6 ibi S SubMnd M S Base M 0 M S x S y S x + ˙ y S
8 7 simp3d S SubMnd M x S y S x + ˙ y S
9 ovrspc2v X S Y S x S y S x + ˙ y S X + ˙ Y S
10 8 9 sylan2 X S Y S S SubMnd M X + ˙ Y S
11 10 ancoms S SubMnd M X S Y S X + ˙ Y S
12 11 3impb S SubMnd M X S Y S X + ˙ Y S