Metamath Proof Explorer


Theorem submcmn

Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypothesis subgabl.h H = G 𝑠 S
Assertion submcmn G CMnd S SubMnd G H CMnd

Proof

Step Hyp Ref Expression
1 subgabl.h H = G 𝑠 S
2 1 submmnd S SubMnd G H Mnd
3 1 subcmn G CMnd H Mnd H CMnd
4 2 3 sylan2 G CMnd S SubMnd G H CMnd