Metamath Proof Explorer


Theorem submid

Description: Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Hypothesis submss.b B = Base M
Assertion submid M Mnd B SubMnd M

Proof

Step Hyp Ref Expression
1 submss.b B = Base M
2 ssidd M Mnd B B
3 eqid 0 M = 0 M
4 1 3 mndidcl M Mnd 0 M B
5 1 ressid M Mnd M 𝑠 B = M
6 id M Mnd M Mnd
7 5 6 eqeltrd M Mnd M 𝑠 B Mnd
8 eqid M 𝑠 B = M 𝑠 B
9 1 3 8 issubm2 M Mnd B SubMnd M B B 0 M B M 𝑠 B Mnd
10 2 4 7 9 mpbir3and M Mnd B SubMnd M