Step |
Hyp |
Ref |
Expression |
1 |
|
submmulgcl.t |
|
2 |
|
submmulg.h |
|
3 |
|
submmulg.t |
|
4 |
|
simpl1 |
|
5 |
|
eqid |
|
6 |
2 5
|
ressplusg |
|
7 |
4 6
|
syl |
|
8 |
7
|
seqeq2d |
|
9 |
8
|
fveq1d |
|
10 |
|
simpr |
|
11 |
|
eqid |
|
12 |
11
|
submss |
|
13 |
12
|
3ad2ant1 |
|
14 |
|
simp3 |
|
15 |
13 14
|
sseldd |
|
16 |
15
|
adantr |
|
17 |
|
eqid |
|
18 |
11 5 1 17
|
mulgnn |
|
19 |
10 16 18
|
syl2anc |
|
20 |
2
|
submbas |
|
21 |
20
|
3ad2ant1 |
|
22 |
14 21
|
eleqtrd |
|
23 |
22
|
adantr |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
24 25 3 26
|
mulgnn |
|
28 |
10 23 27
|
syl2anc |
|
29 |
9 19 28
|
3eqtr4d |
|
30 |
|
simpl1 |
|
31 |
|
eqid |
|
32 |
2 31
|
subm0 |
|
33 |
30 32
|
syl |
|
34 |
15
|
adantr |
|
35 |
11 31 1
|
mulg0 |
|
36 |
34 35
|
syl |
|
37 |
22
|
adantr |
|
38 |
|
eqid |
|
39 |
24 38 3
|
mulg0 |
|
40 |
37 39
|
syl |
|
41 |
33 36 40
|
3eqtr4d |
|
42 |
|
simpr |
|
43 |
42
|
oveq1d |
|
44 |
42
|
oveq1d |
|
45 |
41 43 44
|
3eqtr4d |
|
46 |
|
simp2 |
|
47 |
|
elnn0 |
|
48 |
46 47
|
sylib |
|
49 |
29 45 48
|
mpjaodan |
|