| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submmulgcl.t |  | 
						
							| 2 |  | submmulg.h |  | 
						
							| 3 |  | submmulg.t |  | 
						
							| 4 |  | simpl1 |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 2 5 | ressplusg |  | 
						
							| 7 | 4 6 | syl |  | 
						
							| 8 | 7 | seqeq2d |  | 
						
							| 9 | 8 | fveq1d |  | 
						
							| 10 |  | simpr |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 11 | submss |  | 
						
							| 13 | 12 | 3ad2ant1 |  | 
						
							| 14 |  | simp3 |  | 
						
							| 15 | 13 14 | sseldd |  | 
						
							| 16 | 15 | adantr |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 11 5 1 17 | mulgnn |  | 
						
							| 19 | 10 16 18 | syl2anc |  | 
						
							| 20 | 2 | submbas |  | 
						
							| 21 | 20 | 3ad2ant1 |  | 
						
							| 22 | 14 21 | eleqtrd |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 24 25 3 26 | mulgnn |  | 
						
							| 28 | 10 23 27 | syl2anc |  | 
						
							| 29 | 9 19 28 | 3eqtr4d |  | 
						
							| 30 |  | simpl1 |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 2 31 | subm0 |  | 
						
							| 33 | 30 32 | syl |  | 
						
							| 34 | 15 | adantr |  | 
						
							| 35 | 11 31 1 | mulg0 |  | 
						
							| 36 | 34 35 | syl |  | 
						
							| 37 | 22 | adantr |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 24 38 3 | mulg0 |  | 
						
							| 40 | 37 39 | syl |  | 
						
							| 41 | 33 36 40 | 3eqtr4d |  | 
						
							| 42 |  | simpr |  | 
						
							| 43 | 42 | oveq1d |  | 
						
							| 44 | 42 | oveq1d |  | 
						
							| 45 | 41 43 44 | 3eqtr4d |  | 
						
							| 46 |  | simp2 |  | 
						
							| 47 |  | elnn0 |  | 
						
							| 48 | 46 47 | sylib |  | 
						
							| 49 | 29 45 48 | mpjaodan |  |