Metamath Proof Explorer


Theorem submmulgcl

Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypothesis submmulgcl.t ˙ = G
Assertion submmulgcl S SubMnd G N 0 X S N ˙ X S

Proof

Step Hyp Ref Expression
1 submmulgcl.t ˙ = G
2 eqid Base G = Base G
3 eqid + G = + G
4 submrcl S SubMnd G G Mnd
5 2 submss S SubMnd G S Base G
6 3 submcl S SubMnd G x S y S x + G y S
7 eqid 0 G = 0 G
8 7 subm0cl S SubMnd G 0 G S
9 2 1 3 4 5 6 7 8 mulgnn0subcl S SubMnd G N 0 X S N ˙ X S