Metamath Proof Explorer


Theorem submod

Description: The order of an element is the same in a subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015) (Proof shortened by AV, 5-Oct-2020)

Ref Expression
Hypotheses submod.h H = G 𝑠 Y
submod.o O = od G
submod.p P = od H
Assertion submod Y SubMnd G A Y O A = P A

Proof

Step Hyp Ref Expression
1 submod.h H = G 𝑠 Y
2 submod.o O = od G
3 submod.p P = od H
4 simpll Y SubMnd G A Y x Y SubMnd G
5 nnnn0 x x 0
6 5 adantl Y SubMnd G A Y x x 0
7 simplr Y SubMnd G A Y x A Y
8 eqid G = G
9 eqid H = H
10 8 1 9 submmulg Y SubMnd G x 0 A Y x G A = x H A
11 4 6 7 10 syl3anc Y SubMnd G A Y x x G A = x H A
12 eqid 0 G = 0 G
13 1 12 subm0 Y SubMnd G 0 G = 0 H
14 13 ad2antrr Y SubMnd G A Y x 0 G = 0 H
15 11 14 eqeq12d Y SubMnd G A Y x x G A = 0 G x H A = 0 H
16 15 rabbidva Y SubMnd G A Y x | x G A = 0 G = x | x H A = 0 H
17 eqeq1 x | x G A = 0 G = x | x H A = 0 H x | x G A = 0 G = x | x H A = 0 H =
18 infeq1 x | x G A = 0 G = x | x H A = 0 H sup x | x G A = 0 G < = sup x | x H A = 0 H <
19 17 18 ifbieq2d x | x G A = 0 G = x | x H A = 0 H if x | x G A = 0 G = 0 sup x | x G A = 0 G < = if x | x H A = 0 H = 0 sup x | x H A = 0 H <
20 16 19 syl Y SubMnd G A Y if x | x G A = 0 G = 0 sup x | x G A = 0 G < = if x | x H A = 0 H = 0 sup x | x H A = 0 H <
21 eqid Base G = Base G
22 21 submss Y SubMnd G Y Base G
23 22 sselda Y SubMnd G A Y A Base G
24 eqid x | x G A = 0 G = x | x G A = 0 G
25 21 8 12 2 24 odval A Base G O A = if x | x G A = 0 G = 0 sup x | x G A = 0 G <
26 23 25 syl Y SubMnd G A Y O A = if x | x G A = 0 G = 0 sup x | x G A = 0 G <
27 simpr Y SubMnd G A Y A Y
28 22 adantr Y SubMnd G A Y Y Base G
29 1 21 ressbas2 Y Base G Y = Base H
30 28 29 syl Y SubMnd G A Y Y = Base H
31 27 30 eleqtrd Y SubMnd G A Y A Base H
32 eqid Base H = Base H
33 eqid 0 H = 0 H
34 eqid x | x H A = 0 H = x | x H A = 0 H
35 32 9 33 3 34 odval A Base H P A = if x | x H A = 0 H = 0 sup x | x H A = 0 H <
36 31 35 syl Y SubMnd G A Y P A = if x | x H A = 0 H = 0 sup x | x H A = 0 H <
37 20 26 36 3eqtr4d Y SubMnd G A Y O A = P A