Step |
Hyp |
Ref |
Expression |
1 |
|
submod.h |
|
2 |
|
submod.o |
|
3 |
|
submod.p |
|
4 |
|
simpll |
|
5 |
|
nnnn0 |
|
6 |
5
|
adantl |
|
7 |
|
simplr |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
8 1 9
|
submmulg |
|
11 |
4 6 7 10
|
syl3anc |
|
12 |
|
eqid |
|
13 |
1 12
|
subm0 |
|
14 |
13
|
ad2antrr |
|
15 |
11 14
|
eqeq12d |
|
16 |
15
|
rabbidva |
|
17 |
|
eqeq1 |
|
18 |
|
infeq1 |
|
19 |
17 18
|
ifbieq2d |
|
20 |
16 19
|
syl |
|
21 |
|
eqid |
|
22 |
21
|
submss |
|
23 |
22
|
sselda |
|
24 |
|
eqid |
|
25 |
21 8 12 2 24
|
odval |
|
26 |
23 25
|
syl |
|
27 |
|
simpr |
|
28 |
22
|
adantr |
|
29 |
1 21
|
ressbas2 |
|
30 |
28 29
|
syl |
|
31 |
27 30
|
eleqtrd |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
32 9 33 3 34
|
odval |
|
36 |
31 35
|
syl |
|
37 |
20 26 36
|
3eqtr4d |
|