| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submod.h |
|
| 2 |
|
submod.o |
|
| 3 |
|
submod.p |
|
| 4 |
|
simpll |
|
| 5 |
|
nnnn0 |
|
| 6 |
5
|
adantl |
|
| 7 |
|
simplr |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
8 1 9
|
submmulg |
|
| 11 |
4 6 7 10
|
syl3anc |
|
| 12 |
|
eqid |
|
| 13 |
1 12
|
subm0 |
|
| 14 |
13
|
ad2antrr |
|
| 15 |
11 14
|
eqeq12d |
|
| 16 |
15
|
rabbidva |
|
| 17 |
|
eqeq1 |
|
| 18 |
|
infeq1 |
|
| 19 |
17 18
|
ifbieq2d |
|
| 20 |
16 19
|
syl |
|
| 21 |
|
eqid |
|
| 22 |
21
|
submss |
|
| 23 |
22
|
sselda |
|
| 24 |
|
eqid |
|
| 25 |
21 8 12 2 24
|
odval |
|
| 26 |
23 25
|
syl |
|
| 27 |
|
simpr |
|
| 28 |
22
|
adantr |
|
| 29 |
1 21
|
ressbas2 |
|
| 30 |
28 29
|
syl |
|
| 31 |
27 30
|
eleqtrd |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
32 9 33 3 34
|
odval |
|
| 36 |
31 35
|
syl |
|
| 37 |
20 26 36
|
3eqtr4d |
|