Metamath Proof Explorer


Theorem submrc

Description: In a closure system which is cut off above some level, closures below that level act as normal. (Contributed by Stefan O'Rear, 9-Mar-2015)

Ref Expression
Hypotheses submrc.f F = mrCls C
submrc.g G = mrCls C 𝒫 D
Assertion submrc C Moore X D C U D G U = F U

Proof

Step Hyp Ref Expression
1 submrc.f F = mrCls C
2 submrc.g G = mrCls C 𝒫 D
3 submre C Moore X D C C 𝒫 D Moore D
4 3 3adant3 C Moore X D C U D C 𝒫 D Moore D
5 simp1 C Moore X D C U D C Moore X
6 simp3 C Moore X D C U D U D
7 mress C Moore X D C D X
8 7 3adant3 C Moore X D C U D D X
9 6 8 sstrd C Moore X D C U D U X
10 5 1 9 mrcssidd C Moore X D C U D U F U
11 1 mrccl C Moore X U X F U C
12 5 9 11 syl2anc C Moore X D C U D F U C
13 1 mrcsscl C Moore X U D D C F U D
14 13 3com23 C Moore X D C U D F U D
15 fvex F U V
16 15 elpw F U 𝒫 D F U D
17 14 16 sylibr C Moore X D C U D F U 𝒫 D
18 12 17 elind C Moore X D C U D F U C 𝒫 D
19 2 mrcsscl C 𝒫 D Moore D U F U F U C 𝒫 D G U F U
20 4 10 18 19 syl3anc C Moore X D C U D G U F U
21 4 2 6 mrcssidd C Moore X D C U D U G U
22 2 mrccl C 𝒫 D Moore D U D G U C 𝒫 D
23 4 6 22 syl2anc C Moore X D C U D G U C 𝒫 D
24 23 elin1d C Moore X D C U D G U C
25 1 mrcsscl C Moore X U G U G U C F U G U
26 5 21 24 25 syl3anc C Moore X D C U D F U G U
27 20 26 eqssd C Moore X D C U D G U = F U