Metamath Proof Explorer


Theorem submre

Description: The subcollection of a closed set system below a given closed set is itself a closed set system. (Contributed by Stefan O'Rear, 9-Mar-2015)

Ref Expression
Assertion submre C Moore X A C C 𝒫 A Moore A

Proof

Step Hyp Ref Expression
1 inss2 C 𝒫 A 𝒫 A
2 1 a1i C Moore X A C C 𝒫 A 𝒫 A
3 simpr C Moore X A C A C
4 pwidg A C A 𝒫 A
5 4 adantl C Moore X A C A 𝒫 A
6 3 5 elind C Moore X A C A C 𝒫 A
7 simp1l C Moore X A C x C 𝒫 A x C Moore X
8 inss1 C 𝒫 A C
9 sstr x C 𝒫 A C 𝒫 A C x C
10 8 9 mpan2 x C 𝒫 A x C
11 10 3ad2ant2 C Moore X A C x C 𝒫 A x x C
12 simp3 C Moore X A C x C 𝒫 A x x
13 mreintcl C Moore X x C x x C
14 7 11 12 13 syl3anc C Moore X A C x C 𝒫 A x x C
15 sstr x C 𝒫 A C 𝒫 A 𝒫 A x 𝒫 A
16 1 15 mpan2 x C 𝒫 A x 𝒫 A
17 16 3ad2ant2 C Moore X A C x C 𝒫 A x x 𝒫 A
18 intssuni2 x 𝒫 A x x 𝒫 A
19 17 12 18 syl2anc C Moore X A C x C 𝒫 A x x 𝒫 A
20 unipw 𝒫 A = A
21 19 20 sseqtrdi C Moore X A C x C 𝒫 A x x A
22 elpw2g A C x 𝒫 A x A
23 22 adantl C Moore X A C x 𝒫 A x A
24 23 3ad2ant1 C Moore X A C x C 𝒫 A x x 𝒫 A x A
25 21 24 mpbird C Moore X A C x C 𝒫 A x x 𝒫 A
26 14 25 elind C Moore X A C x C 𝒫 A x x C 𝒫 A
27 2 6 26 ismred C Moore X A C C 𝒫 A Moore A